
Topological Conformal Defects with Tensor Network for Tricritical Ising Model∗

Tu Jingxin† and Yang Chen‡

Department of Physics, Fudan University
(Dated: June 9, 2019)

The tricritical Ising model is one of the few physically relevant theories endowed with
supersymmetry.[1] In this article, we applied the tensor network to investigating the properties
of tricritical Ising model in terms of symmetry and conformal field theory(CFT) to explore the
topological defects of tricritical Ising model(TIM) using the methods tensor network renormaliza-
tion(TNR). By comparing results obtained from TNR and the exact results, the efficiency of TNR
while dealing with many-body system can be well demonstrated. Our work is to make exploration
about the properties of tricritical Ising model and make adjustments to parameters and get numerical
results.

I. INTRODUCTION

A conformal defect is a universality class of critical be-
havior at the junction of two critical systems. A topolog-
ical conformal defect in a conformal field theory (CFT)
is a particular type of conformal defect that is totally
transmissive and can be deformed without affecting the
value of correlators as long as it is not taken across a field
insertion. It can also be regarded as defining a form of
twisted boundary conditions for that CFT.[2]

Tensor Network Theory(TNT) is a kind of highly ef-
ficient and accurate method for simulating strongly cor-
related quantum systems. To evaluate partition func-
tions and Euclidean path integral , Kadanoff’s spin-
blocking procedure opened the path to non-perturbative
approaches based on coarse-graining a lattice.[3–6] In
2007, Levin and Nave proposed the tensor network
group(TRG),[7] a versatile real-space coarse-graining
transformations for 2D classical partition functions.
TRG is an extremely useful approach that has revolution-
ized how we coarse-grain lattice models. However, TRG
fails to remove part of the short-range correlations in
the partition function, and as a result, leading to an RG
flow with non-critical fixed points, which conflicts with
the very spirits of the renormalization group(RG).[8] And
in the third section we will introduce the techniques we
adapted to the coarse-graining of partition functions/Eu-
clidean path integrals, leading to a proper RG flow.[2]
And after we get the results of fixed points, we can ex-
plore the properties of topological conformal defects.

The goal of this paper is to investigate the usage of
tensor network techniques to describe topological confor-
mal defects in tricritical Ising model. The tricritical Ising
model turns out to have five non-trivial topological con-
formal defects. And we analyzed the symmetry defect
Dε′′ as an example.
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A. Defects and transfer matrices

The statistical partition function Z of the tricritical
Ising model on a square lattice with periodic boundary
conditions, can be expressed as a m × n square which
contain m × n sites. And at criticality, the TNR can
be used to extract universal information about a phase
transition by studying the partition function of a finite
system. In a finite system one can observe a realization
of the so-called operator-state correspondence in confor-
mal field theories(CFT).[2] The operator-state correspon-
dence says that all states in the theory can be created
by operators which act locally in a small neighborhood
of the origin. By the operator-state correspondence of
CFT, this partition function can be expressed as a func-
tion of the scaling dimension ∆α and conformal spins sα
of some specific set of scaling operator φα. And in the
final results we draw the plot of conformal towers with
three local primary fields of the ”tricritical Ising CFT”.
We can extract {∆α,sα} from the spectrum of eigenval-
ues of a transfer matrix M for the partition function Z,
which fulfill the equation Z = Tr(Mm).

For a topological conformal defect D, by rewriting the
partition function and transfer matrix as ZD and MD.
Then we can extract another set of scaling dimension and
conformal spins, making up of another conformal tower.

In this paper, the first step is to build tensor network
representations of the transfer matrices and then we will
analyze the process of extracting the scaling dimension
and conformal spins {∆α ,sα}. The final process is to
diagonalizing the transfer matrices. And compared to
diagonalizing the transfer matrices with exact diagonal-
ization techniques, TNR has its superiority from aspect
of dealing with problems in many-body systems, provid-
ing more accurate numerical results.

For concreteness, the process for Z without defects and
ZD exist some differences. For topological conformal de-
fects, we manipulate a local unitary transformation that
moves the location of the topological defect, producing a
generalised translation operator TD that commutes with
MD. The objects of TNR for topological defects are
TD ·MD of the defects.
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FIG. 1. (a)Partition function Z on lattice square made of
n ×m sites with periodic boundary conditions, and the cor-
responding transfer matrix M . (b)Partition function ZD
with the same periodic boundary conditions and the trans-
fer matrix MD. The blue column D is a defect boundary
condition.[9]

B. Structure of this paper

Section II mostly describes the properties of tricriti-
cal Ising model. In details, section II includes the in-
troduction of tricritical Ising model and describes some
basic of minimal models in conformal field theory(CFT),
which includes tricritical Ising CFT that effectively de-
scribes the lattice model at criticality. Then in section
III, we mainly introduce the method of Tensor Network
Renormalization(TNR) and we will focus on the specific
process of applying this method to dealing with prob-
lems of statistical models. Section IV analyze a kind
of topological superconformal defect Dε′′ . We express
the partition functions ZDε′′ of tricritical Ising model in
terms of transfer matrices MDε′′ , and propose generalized
translation operators TDε′′ . Rewriting all the above ob-
jects with tensor network representation, coarse-graining
transformation for the products TDε′′ ·MDε′′ . By diag-
onalizing a transfer matrix that has been coarse-grained
using TNR, we obtain a series of scaling dimension and
conformal spins {∆α,sα}. Then we compare these num-
bers with the exact values to confirm the efficiency of the
algorithm TNR, implementing in tricritical Ising model.

C. Source Code

The numerical results we present were obtained using
a Python3 algorithm. The algorithm is mostly based
on the source code at arXiv:1512.03846, licensed under
the MIT License. We made some adjustment to obtain
the numerical results of tricritical Ising model, while in
the original codes they computed the numerical results of

Ising model and Potts3 model. And to get some universal
data of tricritical Ising model, we use Matlab and Math-
ematica to make some calculations. Thanks the authors
of arXiv:1512.03846 for generously sharing the copyright
to everyone with their source code and figures in their
article.

II. TRICRITICAL ISING MODEL

The tricritical Ising model is the simplest example of
superconformal field theory. Its Hilbert space contains a
finite number of irreducible representations of the super-
Virasoro algebra(the antiholomorphic part is omitted)[1]

[Lm, Ln] = (m− n)Lm+n +
c

12
(m3 −m)δm+n

{Gm, Gn} = 2Lm+n +
1

3
c(m2 − 1

4
)δm+n

[Lm, Gn] = (
1

2
m− n)Gm+n

In particular, it is the simplest known statistical model
to exhibit Supersymmetry, and the fact that it can be
realized experimentally makes it an important model to
study.[10]

In this section, we introduce the tricritical Ising model
on lattice. We also introduce their continuum limit, and
some other properties of tricritical Ising model as a mini-
mal model in conformal field theory. The conformal data
can be estimated using exact diagonalization. The accu-
racy of these estimates is limited by non-universal, finite-
size correlations.

A. Partition Function

The tricritical Ising model is defined by its Hamilto-
nian

H[σi, ti] = −
∑
〈i,j〉

titj(K + δσi,σj )− µ
∑
i

ti

where the variable ti = σ2 is 0 if site is vacant and 1
otherwise. K is the energy of a pair of unlike spins, and
K + 1 that of a pair of like spins. The chemical poten-
tial µ specifies the average number of occupied sites on
the lattice. And σi, σj can take the values ±1, 0. There
is another kind of expression where the Hamiltonian of
tricritical Ising model is

H[σi, σj ] = −
∑
〈i,j〉

Jσiσj − µ
∑
i

(σi)
2

. Here σi, σj = ±1, 0.

http://arxiv.org/src/1512.03846/anc
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The partition function at inverse temperature β is

Z =
∑
ij

eβH =
∑
ij

e
−β(

∑
〈i,j〉

titj(K+δσi,σj )−µ
∑
i
ti)

The chemical potential is a function of temperature,
which means there are relationship of eµ = f(T ).[10] Ac-
cording to the theory of RG flow, whatever value we set
for µ, with TNR methods it will efficiently flow to the
fixed point. So that in codes we set µ = 0. At some
value of (β,K, µ), there is a critical point at which three
phases meet and coexist critically. In addition to identity
operator, five other scaling operators emerge at this tri-
critical point: three energy-like operators σ, σ′, σ′′, corre-
sponding to the three terms of the configuration energy,
and two spin-like operators ε, ε′.[1]

The class of universality tricritical points occurring in
two-dimensional statistical models whose order parame-
ter enjoys Z2 symmetry, is described (in the scaling limit)
by the minimal conformal field theory characterized by
central charge c = 7

10 .[1] For low vacancies and low tem-
perature, we have an ordered phase I with spontaneously
broken Z2 symmetry. On the other side of the transition
line we have a disordered phase II with unbroken symme-
try. At βc there is a phase transition that separates the
low temperature symmetry-breaking, orderd phase from
the high temperature disordered phase. And we set a
approximation value of βc during a specific computation.

B. Tricritical Ising CFT

As we have mentioned above, the classical square lat-
tice model has a critical point at βc. Behaviors near
critical points and continuum limits of these critical
points are both described by minimal models, the partic-
ularly simple conformal theories. Considering the twisted
boundary conditions, on account of the same class of
symmetry, methods applied on 2-dimensional Ising model
can be applied on the tricritical Ising model. Therefore,
the universal properties are obtained from the confor-
mal data. Specifically, according to the periodic bound-
ary conditions defined by a complex modular parameter
τ = τ1 + iτ2, the partition function of a CFT is

ZCFT = Tr(e−2πτ2(L0+L̄0− c
12 )e2πiτ1(L0−L̄0))

= Tr(e−2πτ2HCFT e2πiτ1P )

. Here L0 and L̄0 are the Virasoro generators and HCFT

and P are the Hamiltonian and momentum operators. c
is the central charge.

The scaling operators φα of the CFT are eigenoper-
ators of dilations on an infinite plane. The operator-
state correspondence identifies them with states |φα〉 that
are the eigenvalues of L0 and L̄0: L0|φα〉 = hα|φα〉 and
L̄0|φα〉 = h̄α|φα〉. hα and h̄α are known as the holomor-
phic and antiholomorphic conformal dimension of φα.[9]

Then the partition function can be rewritten as

ZCFT =
∑
α

e−2πτ2(hα+h̄α− c
12 )+2πiτ1(hα−h̄α)

=
∑
α

e−2πτ2(∆α− c
12 )+2πiτ1sα

where ∆α = hα + h̄α and sα = hα − h̄α are known as
the scaling dimension and conformal spins of φα. The
conformal towers are built up from the primary operators
such as hα and h̄α, and then conformal towers are built
up with scaling dimension of the form h = hα + k and
h̄ = h̄α + l, where k, l ∈ N. The theoretical derivation is
the specific realization of operator-state correspondence
theory.

The tricritical Ising model CFT is a conformal field
theory of central charge c = 7

10 . The tricritical Ising
model includes six ”diagonal” primary operators that
have h = h̄. They are called the identity 1 for (0,0),
the magnetization σ for ( 3

80 , 3
80 ), the energy density ε for

( 1
10 , 1

10 ), the submagnetization σ′ for ( 7
16 , 7

16 ), the chemi-

cal potential ε′ for ( 3
5 , 3

5 ), a irrelevant primary operator

ε′′ for ( 3
2 , 3

2 ). Because of the Z2 symmetry of the model,
the conformal towers come with a parity. This parity is
+1 for 1, ε, ε′′ and ε′, and -1 for σ and σ′.[11]

In section IV, we will see that the non-diagonal com-
binations of h and h̄ are relevant to the topological con-
formal defects.

FIG. 2. Scaling dimension and conformal spins of tricritical
Ising model without defects. We run the code with setting
bond dimension χ, χ′ as 11,22 and coarse-graining 9 times in
total. Compared with the results using less coarse-graining
steps, the numerical results of scaling dimension are more
accurate. With additional coarse-graining the accuracy of
conformal spins increases to a high level. To get a better
graphic result, we can put the accurate numbers into one
graph. In this figure we can find primary identity 1(0,0),
ε′( 3

5
, 3
5
), ε′′( 3

2
, 3
2
), σ( 3

80
, 3
80

), and vacuum for σ′, ε.
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III. NUMERICAL RESULTS

The numerical results we obtained from computation
of tricritical Ising model without defects. And the results
are shown in Table I.

Primary (h, h̄) ∆TNR ∆exact sTNR sexact

1 (0, 0) 0 0 10−16 0

ε ( 1
10
, 1
10

) vacant 0.2 vacant 0

ε′ ( 3
5
, 3
5
) 1.0367537 1.2 −10−17 0

ε′′ ( 3
2
, 3
2
) 3.0143559 3 0 0

σ ( 3
80
, 3
80

) 0.2056824 0.075 −10−16 0

σ′ ( 7
16
, 7
16

) vacant 0.875 vacant 0

TABLE I. The scaling dimension and conformal spins of the
primary fields of the tricritical Ising model obtained using
TNR, contrasted with the exact values.

IV. TENSOR NETWORKS

First, we introduce how to use tensor networks to ex-
press the partition function Z and its transfer matrix
M . Then we will describe how to use a coarse-graining
algorithm for tensor networks to analyze large systems
followed with exact diagonalization. By diagonalizing a
transfer matrix M in respect of a large number of n of
sites we can significantly reduce the errors due to finite-
size corrections in estimating scaling dimension and con-
formal spins {∆α,sα}.[9] In detail, we will introduce the
superiority of the TNR algorithm in terms of reducing
the truncation errors and speeding up the procedure of
get critical fixed points.

A. Tensor Network Representation

For tricritical Ising model, with its partition function
we can write out the Boltzmann weights

Bij = eβtitj(K+δσiσj )

where we don’t take consideration of chemical potential
µ in this situation. Then the partition function is

Z =
∑
{σ}

∏
〈i,j〉

Bij

, summing over all the product of all the spin configu-
rations and nearest-neighbor pairs. Periodic boundary
conditions in both directions are assumed. This par-
tition function Z can be written as a tensor network
in many ways. Here we use the notation presented in
Topological conformal defect with tensor network in Fig-
ure.3. The first Figure.3(a) is a direct translation from

the equation above into a tensor network graph notation.
For each spin there is a four-index Kronecker delta δijkl.
The matrix B connected two neighbor leg of two spins.
Then we can see it from the graph that we can use the
notation Aijkl = BijBjkBklBli to represent the interac-
tions around the spin. Aijkl can be regarded as the initial
tensor. Every index of A presents a spin while each ten-
sor accounting for two spins. The original square lattice
has been rewritten to a tensor network Zm,n(A).The rows
and columns of A are denoted as m and n.

It needs to be clarified that when we read equations
or tensor network diagrams, we read the equations from
left to right and read the diagrams from left to right or
bottom to top.

We can see it from Figure.3 that Z can be rewrite as
Z = Tr(Mm) where the transfer matrix is in Figure.3(b),
or

Mk1k2...kn
j1j2...jn

=
∑

i1,i2...in

n∏
α=1

Aiαjαiα+1kα

Here all the iα are summed over and i1 is identical with
in+1. We here assumed M is a linear map from Vj to
Vk(noted that Vj is the tensor product of all the vector
spaces of indices jα(as well as Vk and kα))[9].

Figure.3(c) is presenting a lattice translation in the
network. The operator T is used to connect the bound-
ary of the rewritten square lattice. In Figure.3(d) is the
operator T ·M , which we need to diagonalize to extract
universal data of phase transition.

The Z2 symmetry of tricritical Ising model is crucial
in the tensor network representation. For a model with
global internal symmetry, the symmetry can be made
manifest in the tensors themselves.[7] For now we only
need to know that for tricritical Ising model this means
that we can use the methods shown in Figure.4, which
means if we add a spin-flip matrix V on each leg, the
tensors are left unchanged. It is a unitary matrix that
contains V 2 = 1. We call a tensor as Z2 invariant tensor
if it obeys the invariance property shown in Figure.4. For
tricritical Ising model, we set

V =


√

3
3 −

√
6

3

√
2

−
√

6
3

2
√

3
3 1√

2 1 0


.The vector space connected to each leg of a Z2 invariant
tensor is the direct sum of two subspaces, one for each
parity ±1. Thus we can add a parity to each vector of the
transfer matrix and the corresponding scaling operator
φα.

B. Coarse-graining

A tensor network coarse-graining transformation maps
a network like Zn,m(A) to a network Zn′,m′(A′), with its
elements A′ and describes a longer length scale features
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FIG. 3. Graphic tensor network language.(a)The graphic presentation of a single tensor A and the translation of partition
function from a square lattice to a tensor network.(b)Translation of transfer matrix in tensor network representation.(c)The
one-site translation operator T (d)The translation operator composed with the transfer matrix[9]

FIG. 4. The invariance of tensor A under symmetry transfor-
mation V[9]

of the system. Here for instance we consider a coarse-
graining where each A′ stands for four original tensors A
and n′ = n

2 , m′ = m
2 , which means the linear size of the

system downsized by 1
2 .

Using the same procedure of coarse-graining, we ob-
tain A(0) 7→A(1) 7→. . . 7→A(s) that A(0)≡A. After several
times of repeated coarse-graining the tensor converged
to a fixed-point tensor A(s). For each tensor A(s), it
represents 4s of the original tensors A(0), and the net-
work Z n

2s ,
m
2s

(A(s)) is an approximation to the original
network, which can be seen in the Figure.5. Then this
tensor network can be used to describe the properties of
tricritical Ising model near criticality according to the
theory of renormalization group. We can then use the
coarse-graining tensors A(s) to produce a transfer matrix
M representing many spins and extract {∆α, sα} with
smaller finite-size corrections.[9] That’s the basic proce-
dure of tensor network coarse-graining. However, when
it comes to the specific steps of coarse-graining, each step
brings some truncation errors. To reduce the truncation
errors, G.Evenbly and G.Vidal have developed an effi-
cient method-tensor network renormalization(TNR). In
details, the method is based on inserting approximate

FIG. 5. A coarse-graining procedure which present RG
flow.[9]

partitions of unity into the network and optimizing them
to minimize the truncation error. By this way, in each
step it removes all short- range correlations and realize a
proper renormalization group flow with the critical fixed
point tensor. The detailed procedure has been presented
in Figure.6.

There is an essential role in the coarse-graining pro-
cess called the bond dimension of the network. It’s the
dimension χ of the indices of A(s). The bond dimen-
sion controls the computational cost of coarse-graining,
which grows as a power of χ, as well as the truncation
errors introduced at each coarse-graining step decreasing
by growing χ. In order to estimate {∆α, sα}, a useful
coarse-graining scheme is then one where a sufficiently
small χ can be kept over several coarse-graining steps
while at the same time keeping the truncation errors suf-
ficiently small, so that they do not significantly affect
the numerical estimates.[2] We can find out that the best
parameters are the parameters which the finite-size cor-
rections and truncation errors are of the same magnitude,
and their cumulative effect on the results is thus at the
minimum.
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FIG. 6. The picture shows the detailed procedure of a step
of coarse-graining in TNR (a)Show the tensors used to opti-
mizing coarse-graining procedure in TNR.(b)the u tensor is
unitary and the w, vL, vR tensors are isometric.(c)Inserting
u, vL, vR with truncation errors, by optimizing the aux-
iliary tensors to reduce the errors.(d)(h)Contracted ten-
sors.(e)(f)Inserting w and the purple tensors are split into

two parts. Bond dimension χ, χ
′

are the (maximum allowed)
dimension of the bonds they point at and all similar bonds in
the network.[9]

Applying a 2 × 27→1 coarse-graining transformation s
times, then from a 2s×(2s · ns) tensors A we obtain a
transfer matrix M(s) in Figure.6. The computational cost
then scales logarithmically in system size, which means
M (s) with dimension χ(ns) × χ′(ns) can be diagonalized
for sufficiently small values of ns and χ. In the same
way we diagonalize T (s) ·M (s) where T (s) is a transla-
tion operator. After the final coarse-graining step on the
composite operator T (s) ·M (s), the periodicity of the con-
formal spins is raised to 2ns.[9]

FIG. 7. The coarse-grained transfer matrix and translation
operator[9]

V. TOPOLOGICAL DEFECTS

Different topological conformal defects can be thought
of as different boundary conditions, leading to different
partition functions. The tricritical Ising model has five
different topological defects, while we will introduce them
in the following part generally. And in next section, we
mostly introduce one type of topological defect which we
have realized the conformal data with TNR method by
codes.

As we have introduced earlier in section II, the parti-
tion function of a CFT on a torus can be written as:

ZCFT = Tr(e−2πτ2HCFT e2πiτ1P )

Considering a twisted partition function ZD as:

ZD = Tr(De−2πτ2HCFT e2πiτ1P )

Here D is a twist operator, which represents a special
type of boundary condition. If D commutes with all the
generators of the Virasoro algebra it is called a topolog-
ical conformal defect.[9] If the defect is topological the
loop can be freely deformed without affecting correla-
tion functions in the systems as long as the defect is not
moved across a field insertion. The conformality of the
defect also means that it is invariant under scale trans-
formations, namely in the process of TNR, the defect is
invariant.

The twisted partition function ZD can be written as a
sum of terms relating to scaling dimension and conformal
spins {∆α, sα}D, with the same manipulation as non-
twisted Z.[9]

The two defects next to each other can behave as one
defect, which obey the fusion rules of the topological de-
fects as follows,

Dε′′×(D1, Dε, Dε′ , Dε′′ , Dσ, Dσ′) = (Dε′′ , Dε′ , Dε, D1, Dσ, Dσ′)

Like Ising CFT, all possible topological conformal de-
fects of tricritical Ising model can be written as lin-
ear combination of six defects which we have men-
tioned. And these simple defects can be expressed as
D1, Dε, Dε′ , Dε

′′, Dσ, Dσ′ . They are related to the same
irreducible representations of the Virasoro algebra as the
primary field 1, ε, ε′, ε′′, σ, σ′. The D1 defect is the triv-
ial defect where the twist operator is just the identity.
The partition function ZD1

= Z, has been discussed in
previous sections. First of all, there is the Z2 symme-
try related to the spin-reversal transformation, that in
the Landau–Ginzburg approach corresponds to φ� −φ.
The fields , ε, ε′, ε′′ are even with respect to such a trans-
formation, while σ, σ′ are odd. Another symmetry mul-
tilated from the lattice model is the Kramers–Wannier
duality, under which the magnetization operators σ, σ′

are mapped onto their corresponding disorder operators
µ, µ′, while ε, ε′′ are odd, and ε′ is even. The behavior
of primary operators of TIM under these two discrete
symmetries is summarized in Table II.[11]
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μ

μ’Lorem Ipsum

FIG. 8. Scaling dimension and conformal spins of tricritical
Ising model with Dε′′ defects. We run the code with setting
bond dimension χ, χ′ as 11,22 and coarse-graining 9 times in
total.

Field Spin-reversal Kramers-Wannier

ε ε −ε

ε′ ε′ ε′

ε′′ ε′′ −ε′′

σ −σ µ

σ′ −σ′ µ′

TABLE II. Discrete symmetries of TIM

The operators present in the twisted partition func-
tions come organized in conformal towers built on top of
primary operators, each of which is identified with con-
formal dimension(h, h̄).[9] According to the fusion rules
of primary operators of M(5, 4), we can work out the
fusion rules of topological defects.

Field Physical Meaning Conformal Dimension

µ Disorder Field ( 3
80
, 3
80

)

µ′ Subleading Disorder Field ( 7
16
, 7
16

)

ψ Fermion ( 3
5
, 1
10

)

ψ̄ Anti-fermion ( 1
10
, 3
5
)

G Susy Generator ( 3
2
, 0)

Ḡ Susy Generator (0, 3
2
)

TABLE III. Operators in the TIM with Z2-twisted boundary
conditions[11]

VI. SYMMETRY DEFECT: Dε′′

To understand the Dε′′ defect, through universal data
we can extract the exact scaling dimension and conformal
spins, which is shown in the graphic results with green
circles. The topological defect comes from the twisted
boundary condition, The conformal boundary conditions
for c = 7

10 may be classified following the work in [12].
According to the computation results in [10], The bound-
ary states corresponding to “physical” boundary condi-
tions can be constructed following the procedure in [12]
and have the form

| 3̃
2
〉 = C|0〉+ η| 1

10
〉+ η|3

5
〉+ |3

2
〉 − 4
√

2| 7

16
〉 − 4
√

2| 3

80
〉

where C =
√

sin π
5√

5
and η =

√
sin 2π

5

sin π
5

. Here |j〉 =∑
N

|j,N〉 ⊗ |j,N〉 where j labels a highest weight rep-

resentation of the algebra of the LN , and |j,N〉 is an
orthonormal basis in this representation space.[10]

But here to construct the Hamiltonian and partition
function for Dε′′ defect, we have to describe the boundary
condition from the aspect of quantum spin chain. We
have to introduce the spin-1 Blume-Capel Model(BCM)
Quantum Spin Chain first. This model is obtained by
the time-continuum limit of the well known BCM in two
dimension. It describes the dynamics of spin-1 localized
particles, with Hamiltonian given by

HBC = −
∑
j

(szjs
z
j+1 − δ(szj )2 − γsxj )

where ss and sz are the spin-1 SU(2) operators. For val-
ues γ > γtr the Hamiltonian has a quantum critical line
δc(γ) governed by a CFT in the same universality class
of the quantum Ising chain, i.e. Central charge c = 1

2 .
At γtr the model has a quantum tricritical point at δtr
in the universality class of the tricritical Ising model,
having central charge c = 7

10 . For γ < γtr there is a
line δ = δgap(γ) of first-order phase transitions. By ac-
curately estimating, the tricritical point was located at
γtr = 0.41563 and δtr = 0.91024.[13] By setting the pa-
rameters of defect Dε′′ in the codes and make comparison
of the graphic results with the primaries of Dε′′ , we de-
duce that the boundary condition in the form of quantum
chain can be described as

HDε′′ = −
n−1∑
j=1

(szjs
z
j+1 − sznsz1 − δtr(szj )2 − γtrsxj )

. That’s the lattice representation of the defect. If we
manipulate the HDε′′ with unitary operator, we can move
the defect to one side.

As for defect Dε′′ , the HDε′′ and ZDε′′ can be denoted
with tensor network representation like the Figure.9. The
figure shows how the defect be moved to a side by con-
jugating some unitary operators.
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FIG. 9. (a)The tensor networks for the partition function
ZDε′′ and its transfer matrix MDε′′ which fulfills ZDε′′ =
Tr(MDε′′ ). V is the spin-1 SU(2) operator sx that flips a spin.

(b)The invariance property of A and the fact that V 2 = 1 in-
dicates that the symmetry defect can be removed to one side
in this way. (c)The operator TDε′′ ·MDε′′ whose diagonaliza-
tion produces the conformal data ∆α, sαDε′′ .[9]

By making some adjustment to the codes, we obtain a
graphic result using the simulation with algorithm TNR
as Figure.8. We can find that some primary operators
emerge in the figure, they are the fermion field ψ( 3

5 ,
7
10 ),

, antifermion field ψ̄, ( 7
10 ,

3
5 ), supersymmetry generators

G( 3
2 , 0) and Ḡ(0, 3

2 ) and the disordered field µ( 3
80 ,

3
80 ).

But the subleading disordered field has not appeared.

VII. NUMERICAL RESULTS

The numerical results are shown in Table V.

FIG. 10. Coarse-graining a Dε′′ defect produces a similar
defect at next scale. A(i) and A(i+1) are the same tensors
when coarse-graining a system without a defect. [9]

ZD1 0 1
10

3
5

3
2

3
80

7
16

0 1

1
10

ε

3
5

ε′

3
2

ε′′

3
80

σ

7
16

σ′

ZDε′′ 0 1
10

3
5

3
2

3
80

7
16

0 G

1
10

ψ

3
5

ψ̄

3
2

Ḡ

3
80

µ

7
16

µ′

TABLE IV. The primary operators included in tricritical
Ising model partition functions with defect Dε′′ .

VIII. DISCUSSION

In this paper, we introduce the algorithm tensor net-
work renormalization and tricritical Ising model. The
theoretical analysis are mostly based on conformal field
theory(CFT). And based on the previous work of 2-
dimensional classical Ising model, our main work is to
learn the relevant tricritical Ising CFT, specifically the-
ories of minimal model and learn more about tensor
network renormalization. Then we get two figures of
conformal towers, which describing the differential value
between the conformal data extracted from the classi-
cal computation and the data worked out by TNR, and
some numerical results obtained from the codes. We have
spent plenty of time to know more about the relevant the-
ory under condition of lacking many background knowl-
edge. And we spent much time on figuring out the algo-
rithm of the source codes. On the basis of learning, we
make adjustment for the codes and get some results that
is under other expectation basically.

When it comes to the numerical results, we think that
the main differences between the exact diagonalization
results and the simulation results are from the imperfec-
tion in some aspects of the algorithm, so that the graphic
results lack some primary operators. As for the origi-
nal parameters, with the bond dimension χ, χ′ increas-
ing, the computation times are increasing exponentially
and truncation errors are decreasing quickly, while with
the coarse-graining times increasing, the truncation er-
rors are increasing and the accuracy of the accuracy of
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Primary (h, h̄) ∆TNR ∆exact sTNR sexact

µ ( 3
80
, 3
80

) 0.0694909 0.075 10−16 0

µ′ ( 7
16
, 7
16

) vacant 0.875 vacant 0

ψ ( 1
10
, 3
5
) 0.5183355 0.7 0.4999737 0.5

ψ̄ ( 3
5
, 1
10

) 0.5183355 0.7 −0.4999737 −0.5

G (0, 3
2
) 1.5064868 1.5 1.4999563 1.5

Ḡ ( 3
2
, 0) 1.5064868 1.5 −1.4999563 −1.5

TABLE V. The scaling dimension ∆ and conformal spins s
for the primaries of ZDε′′ as obtained with TNR compared
with the exact values. Here we present the numerical results
to demonstrate the accuracy of our method.

conformal spins increases to a high level while with less
coarse-graining times, we will get more accurate simu-
lation of scaling dimension. Because of time limitation,
we set the bond dimension χ, χ′ as 11,22 and to get each
graphic result we compute for nearly one day and in this
paper we present the results which still seems not so fixed
with exact results.

In the future, we have the following aspects to dig
more, first we plan to explore the relevant conformal
field theory(CFT) in-depth knowledges and implement
the method on other topological conformal defects or
other minimal models. For concreteness, we plan to dig
more about the boundary condition of the other defects
and optimize our algorithm. Besides, we plan to explore
the tensor network renormalization methods and apply
it to other aspects by programming on the basis of deep
exploration of the source codes at arXiv:1512.03846.
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IX. APPENDIX

First of all, we are deeply grateful for the guidance
and suggestions during the process from professor Hung
Ling-yan. We are grateful for her proposing this problem
while we ask for some advice when we have no ideas for
the task. It’s a great opportunity for us to begin learning
about tensor network and we hope to continue digging on
it. Thanks Professor Chen Yan for his encouragement for
our work and proving the opportunity for us to start such
a task. The process is demanding but meaningful very
well.

Here are some key codes of our source code. It’s a pity
that we cannot put the entire code here because of its
length(about 2× 104 lines!)

http://arxiv.org/src/1512.03846/anc
http://arxiv.org/abs/arXiv: 1412.0732v3
http://arxiv.org/abs/arXiv: 1512.03846v3
http://arxiv.org/abs/arXiv: 1512.03846v3
http://arxiv.org/abs/arXiv:hep-th/9510008
http://arxiv.org/abs/arXiv: 0710.0991v2
http://arxiv.org/abs/arXiv: 0710.0991v2
http://arxiv.org/abs/arXiv:1111.6577
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FIG. 11. The function we used to express Hamiltonian. The
matrix presents all the conditions when the neighbor spinors
take different values.

FIG. 12. The symmetry bases we chose to operate the tensor. FIG. 13. The code used to generate the initial tensor, which
is the basic element of the tensor network. Those integers are
the numbers to denote the legs.

FIG. 14. The minimal characters of the tricritical Ising
model.

FIG. 15. The code used to distinguish the identity and the
Dε′′ defect.
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FIG. 16. Part of the code to get the tensor after coarse-
graining.

FIG. 17. Some annotation used to show the meaning of some
parameters(qnum, shape, et al).
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