
Real Analysis

Weixiao Shen

1 Introduction
Main goals:

• Measure theory: Extend the concept of length of intervals to general subsets
of R.

• Lebesgue integral: more convenient than the Riemann integral, in particular,
for interchange of limit and integral.

1.1 The extended real numbers system
R = R [ {�1,1}.

• ordering: �1 < x < 1 for all x 2 R.

• sup A and inf A.

• algebraic operations involving ±1: for addition and substraction,1+(�1),
1 � 1, (�1) + 1, (�1) � (�1) are not allowed; for multiplication, use
0 ·1 = 0 · (�1) = 0.

1.2 Sum of series in [0,1]
Let {an}1n=1 be a sequence in [0,1] =: R+. If one of an’s is 1 or if all of them are
in R but the series

P1
n=1 an diverges, we shall write

1X

n=1

an = 1.
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2 Sets

2.1 Axiom of Choice and Zorn’s lemma
Axiom of Choice. Let X be a set whose elements non-empty sets. Then there is a
map defined on X such that for any A ∈ X, f (A) ∈ A.

The following Zorn’s Lemma is an equivalent statement of Axiom of Choice
and sometimes more convenient to use.

Definition 2.1. A partial order on a non-empty set X is a relation, often denoted
by �, such that

• a � a for each a ∈ X;

• For any a, b, c ∈ X, if a � b and b � c then a � c.

• if a � b and b � a then a = b.

A subset E of X is totally ordered if for any a, b ∈ E, either a � b or b � a. A
member x of X is called an upper bound for a subset E of X if for any a ∈ E, a � x
holds. A member x of X is called maximal if for any x′ ∈ X, x � x′ does not hold.

Zorn’s Lemma. Let X be a partially ordered non-empty set for which every totally
ordered subset has an upper bound. Then X has a maximal element.

Proposition 2.2. Every vector space has a basis.

Proof. Let V be a vector space over some field F. Recall that a subset B of V
is linearly independent if for any positive integer n, any b1, b2, . . . , bn ∈ B and
λ1, λ2, . . . , λn ∈ F,

λ1b2 + λ2b2 + · · · + λnbn = 0 =⇒ λ1 = λ2 = · · · = λn = 0.

Let B denote the collection of all linear independent subsets of V and define a
partial order � as follows: B1 � B2 if B1 ⊂ B2.

Let us prove that any totally ordered subset B′ of B has an upper bound. It
suffices to show that B′ :=

⋃
B∈B′ is lineally independent so that it is a desired

upper bound. To this end, let b1, . . . , bn ∈ B′ and λ1, . . . , λn ∈ F be such that
λ1b1 + · · ·+λnbn = 0. we need to show that λ1 = · · · = λn = 0. Let B1, B2, . . . , Bn ∈

B′ such that bi ∈ Bi for each 1 ≤ i ≤ n. Since B′ is totally ordered, for any
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1 ≤ i, j ≤ n either Bi ⊂ B j or B j ⊂ Bi. Thus there is i0 ∈ {1, 2, . . . , n} such that
Bi0 =

⋃n
i=1 Bi. So b1, b2, . . . , bn are contained in the linearly independent set Bi0 ,

which implies that λ1 = · · · = λn = 0.
By Zorn’s Lemma, B has a maximal element B. Let us show that B is a basis

of V . Otherwise, there is v ∈ B which cannot be expressed as a linear combination
of elements of B. Hence B ∪ {v} is again linearly independent, contradicting the
maximality of B. �

2.2 Countable
Definition 2.3. We say that two sets A and B are equipotent (or have the same
cardinality) if there exists a bijection f : A→ B.

Definition 2.4. A set E is called countable if it is equipotent to a subset of N =

{1, 2, . . .}. A set is called uncountable if it is not countable.

In other words, a set E is countable if either it is finite or there exists a bijective
f : E → N.

Proposition 2.5. 1. If {En}
∞
n=1 is a sequence of countable sets, then

⋃∞
n=1 En is

countable.

2. A subset of a countable set is countable.

3. The set of all rational numbers Q is countable.

Proof. (1) If all these sets En are finite, then it is easy to show that
⋃

n En is
finite or countably infinite. For the general case, list the elements of En by an,m,
m = 1, 2, . . .. Then for each k ≥ 1, the set Fk = {an,m : n + m = k} is finite. As⋃

n En =
⋃

k Fk, the statement follows.
(2) Let E be a countable set and let A ⊂ E. If E is finite, then A is finite.

Assume that there is a bijection f : E → N and A is infinite. Then f (A) is an
infinite subset of N. Define n1 = inf f (A) and for each k ≥ 1, define inductively
nk+1 = inf f (A) \ {n1, n2, . . . , nk}. Then f (A) = {n1, n2, . . .}. Definie g : f (A) → N
by nk 7→ k. Then g ◦ f : A→ N is a bijection.

(3) For each n ≥ 1, let En = {m/n : m ∈ Z}. Then En is countable. By (1), so
is Q =

⋃
n En. �

Theorem 2.6. The set R is uncountable.
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To prove the theorem, we shall need the following lemma, which is useful in
verifying that two infinite sets have different cardinality.

Lemma 2.7. Let Y be an arbitrary set and letY denote the set of all subsets of Y.
Then there does not exist a bijection from Y to Y.

Proof of Lemma 2.7. Arguing by contradiction, assume that there exists a bijec-
tion ϕ : Y → Y. Let

A = {y ∈ Y : y < ϕ(y)}.

Since ϕ is a bijection, there exists a ∈ Y such that ϕ(a) = A. If a ∈ A, then by
definition of the set A, we have a < ϕ(a) = A, a contradiction. If a ∈ Y \ A, then
by definition of A, we have a ∈ ϕ(a) = A, again a contradiction! �

Proof of Theorem 2.6. LetN denote the set of all subsets ofN = {1, 2, . . .}. Define
a map f : N → R as follows: for each A ⊂ N,

f (A) =

∞∑
i=1

χA(i)
2i .

Let
N0 = {A ⊂ N : either A or N \ A is finite}.

ThenN0 is countable and thus by Lemma 2.7,N \N0 is uncountable. Note that f
is injective onN \N0. It follows that there is a bijection from U = f (N \N0) ⊂ R
onto a uncountable set. Therefore R is uncountable. �

Theorem 2.8 (Cantor-Schöder-Berstein). Let A, B be sets. Assume that there exist
injections f : A→ B and g : B→ A. Then A and B are equipotent.

Proof. Without loss of generality, we may assume that B ⊂ A and g is the inclu-
sion map. (Otherwise, putting B̃ = g(B) and f̃ = g ◦ f , then f̃ is an injective
from A to its subset B̃ and we only need to show that A and B̃ are equipotent.) Let
C0 = A \ B and Cn = f n(C0) for each n ≥ 1. Let D = B \

(⋃∞
n=1 Cn

)
. Then A is

the disjoint union of D and Cn, n ≥ 0, while B is the disjoint union of D and Cn,
n ≥ 1. Define

F(x) =

{
x if x ∈ D,
f (x) if x ∈ Cn for some n ≥ 0.

Then F is a bijection from A to B. �

Theorem 2.9. Let f : R → R be a monotone function. Then f is continuous
except possibly at countably many points.
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Proof. Without loss of generality, we assume that f is increasing. For each x ∈ R,
let

δ(x) = lim
y↘x

f (y) − lim
y↗x

f (y) ≥ 0.

Then f is continuous at x if and only if δ(x) = 0. In order to show that

E := {x ∈ R : f is not continuous at x} = {x ∈ R : δ(x) > 0}

is countable, it suffices to show that for all positive integers n, k,

En,k = {x ∈ (−n, n) : δ(x) > k−1}

is finite. To this end, we shall prove that

#En,k < k( f (n) − f (−n)). (1)

Otherwise, there exists −n = x0 < x1 < x2 < · · · < xm < xm+1 = n with m ≥
k( f (n) − f (−n)) and δ(xm) > 1/k. By definition of δ(x),

x0 < a1 < x1 < b1 < a2 < x2 < b2 < · · · < am < xm < bm < xm+1

such that
f (bi) − f (ai) > 1/k.

Then

f (n) − f (−n) =

m∑
i=0

( f (xi+1) − f (xi)) ≥
m∑

i=1

( f (bi) − f (ai)) > m/k,

which implies that m < k( f (n) − f (−n)), a contradiction! �

An alternative proof. Without loss of generality, we assume that f is increasing.
Let E = {x ∈ R : f is not continuous at x}. Then for each x ∈ E,

ax := lim
y↗x

f (y) < bx := lim
y↘x

f (y).

Since f is monotone, the intervals (ax, bx) are pairwise disjoint. For each x ∈ E,
since Q is dense in R, there exists q(x) ∈ (ax, bx). This defines a function q : E →
Q. Since q(x1) , q(x2) for any x1, x2 ∈ E with x1 , x2, q is injective. Since Q is
countable, E is countable. �
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