Real Analysis

Weixiao Shen

1 Introduction
Main goals:

e Measure theory: Extend the concept of length of intervals to general subsets
of R.

e Lebesgue integral: more convenient than the Riemann integral, in particular,

for interchange of limit and integral.

1.1 The extended real numbers system
R =R U {~c0, c0}.
e ordering: —oo < x < oo forall x € R.
e supA and inf A.

e algebraic operations involving +co: for addition and substraction, co+(—00),
0o — 00, (—00) + 00, (—00) — (—o0) are not allowed; for multiplication, use
0-00=0:(-00)=0.

1.2 Sum of series in [0, o]

Let {a,}>" , be a sequence in [0, co] =: R,. If one of a,’s is oo or if all of them are

n=1
in R but the series > . | a, diverges, we shall write

n=1
(s8]
E a, = 00,



2 Sets

2.1 Axiom of Choice and Zorn’s lemma

Axiom of Choice. Let X be a set whose elements non-empty sets. Then there is a
map defined on X such that for any A € X, f(A) € A.

The following Zorn’s Lemma is an equivalent statement of Axiom of Choice
and sometimes more convenient to use.

Definition 2.1. A partial order on a non-empty set X is a relation, often denoted
by <, such that

e a <aforeachac€X;
e Foranya,b,ce€ X, ifa<bandb < cthena < c.
o ifa<bandb <athena=b.

A subset E of X is totally ordered if for any a,b € E, eithera < borb < a. A
member x of X is called an upper bound for a subset E of X if foranya € E, a < x
holds. A member x of X is called maximal if for any x’ € X, x < x’ does not hold.

Zorn’s Lemma. Let X be a partially ordered non-empty set for which every totally
ordered subset has an upper bound. Then X has a maximal element.

Proposition 2.2. Every vector space has a basis.

Proof. Let V be a vector space over some field F. Recall that a subset B of V
is linearly independent if for any positive integer n, any by, b,,...,b, € B and
/l],ﬂz,...,/ln e F,

/11b2+/12b2+"'+/1nbn20:/11:/12:"':/1”:0.

Let 8B denote the collection of all linear independent subsets of V and define a
partial order < as follows: B; < B, if B; C B,.
Let us prove that any totally ordered subset $’ of B has an upper bound. It

suffices to show that B" := |Jz.s is lineally independent so that it is a desired
upper bound. To this end, let by,...,b, € B’ and A4y,...,4, € F be such that
Aiby+---+4,b, = 0. weneedtoshow that 4; =--- =4, =0. Let B;,B,,...,B, €

$’ such that b; € B; for each 1 < i < n. Since 8’ is totally ordered, for any
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1 <i,j < neither B; C B; or B; C B;. Thus there is iy € {1,2,...,n} such that
B, = U~ Bi. So by, b,,...,b, are contained in the linearly independent set B
which implies that 4y = --- =4, = 0.

By Zorn’s Lemma, $ has a maximal element B. Let us show that B is a basis
of V. Otherwise, there is v € B which cannot be expressed as a linear combination
of elements of B. Hence B U {v} is again linearly independent, contradicting the
maximality of B. O

ip>

2.2 Countable

Definition 2.3. We say that two sets A and B are equipotent (or have the same
cardinality) if there exists a bijection f : A — B.

Definition 2.4. A set E is called countable if it is equipotent to a subset of N =
{1,2,...}. A setis called uncountable if it is not countable.

In other words, a set E is countable if either it is finite or there exists a bijective
f:E—-N.

Proposition 2.5. 1. If{E,}", is a sequence of countable sets, then | J,_, E, is
countable.

2. A subset of a countable set is countable.
3. The set of all rational numbers Q is countable.

Proof. (1) If all these sets E, are finite, then it is easy to show that | J, E, is
finite or countably infinite. For the general case, list the elements of E, by a,,,,
m = 1,2,.... Then for each k > 1, the set Fy = {a,,, : n + m = k} is finite. As
U, En = Uy Fi, the statement follows.

(2) Let E be a countable set and let A c E. If E is finite, then A is finite.
Assume that there is a bijection f : E — N and A is infinite. Then f(A) is an
infinite subset of N. Define n; = inf f(A) and for each k > 1, define inductively
Ny = inf f(A) \ {ny,ny, ..., ). Then f(A) = {ny,n,,...}. Definie g : f(A) > N
by n; +— k. Then go f : A — N is a bijection.

(3) Foreachn > 1, let E, = {m/n : m € Z}. Then E, is countable. By (1), so
isQ=U,E,. O

Theorem 2.6. The set R is uncountable.



To prove the theorem, we shall need the following lemma, which is useful in
verifying that two infinite sets have different cardinality.

Lemma 2.7. Let Y be an arbitrary set and let Y denote the set of all subsets of Y.
Then there does not exist a bijection from 'Y to M.

Proof of Lemma 2.7. Arguing by contradiction, assume that there exists a bijec-
tiong: Y —» Y. Let

A={yeY:y¢ o}
Since ¢ is a bijection, there exists a € Y such that p(a) = A. If a € A, then by

definition of the set A, we have a ¢ ¢(a) = A, a contradiction. If a € Y \ A, then
by definition of A, we have a € ¢(a) = A, again a contradiction! O

Proof of Theorem 2.6. Let N denote the set of all subsets of N = {1, 2,...}. Define
amap f : N — R as follows: foreach A C N,

fay =y
i=1

Let
Ny ={A Cc N : either A or N\ A is finite}.

Then N is countable and thus by Lemma 2.7, N'\ N, is uncountable. Note that f
is injective on N\ Ny. It follows that there is a bijection from U = f(N' \ Ny) C R
onto a uncountable set. Therefore R is uncountable. O

Theorem 2.8 (Cantor-Schoder-Berstein). Let A, B be sets. Assume that there exist
injections f : A — Band g : B— A. Then A and B are equipotent.

Proof. Without loss of generality, we may assume that B C A and g is the inclu-
sion map. (Otherwise, putting B = g(B) and f = g o f, then f is an injective
from A to its subset B and we only need to show that A and B are equipotent.) Let
Co=A\Band C, = f*(Cyp) foreachn > 1. Let D = B\ (UJ,., C,). Then A is
the disjoint union of D and C,, n > 0, while B is the disjoint union of D and C,,

n > 1. Define
X ifxeD,

f(x) ifxeC, forsomen > 0.

F(x) = {
Then F is a bijection from A to B. O

Theorem 2.9. Let f : R — R be a monotone function. Then f is continuous
except possibly at countably many points.
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Proof. Without loss of generality, we assume that f is increasing. For each x € R,
let

6(x) = ii\H;f(y) - ii;gf(y) > 0.
Then f is continuous at x if and only if 5(x) = 0. In order to show that
E :={x e R : fisnot continuous at x} = {x € R : 6(x) > 0}
is countable, it suffices to show that for all positive integers n, k,
E,;={x€e(-nn):6(x)>k"}
is finite. To this end, we shall prove that
#E,x < k(f(n) — f(=n)). (1)

Otherwise, there exists —n = xy < X1 < X3 < -+» < X, < X1 = 1 With m >
k(f(n) — f(-n)) and 6(x,,) > 1/k. By definition of d(x),

xo<a1<x1<b1<a2<x2<b2<---<am<xm<bm<xm+1

such that
fbi) — fla) > 1/k.
Then

fm) = f=m) = > (Flx) = FO) = D (FB) = f(@)) > mik,
i=0 i=1

which implies that m < k(f(n) — f(—n)), a contradiction! O

An alternative proof. Without loss of generality, we assume that f is increasing.
Let E = {x € R : f is not continuous at x}. Then for each x € E,

=1 <b,:=1 .
a; = lim f») yI{Ir;f(y)

Since f is monotone, the intervals (a,, b,) are pairwise disjoint. For each x € E,
since Q is dense in R, there exists g(x) € (a,, b,). This defines a functiong : E —
Q. Since g(x;) # g(x;) for any xy, x, € E with x; # x,, ¢ is injective. Since Q is
countable, E is countable. O



