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Abstract We prove potential automorphy results for a single Galois repre-
sentation GF → GLn(Ql) where F is a CM number field. The strategy is
to use the p, q switch trick to go between the p-adic and q-adic realisation
of a certain variant of the Dwork motive. We choose this variant to break
self-duality shape of the motives, but not the Hodge-Tate weights. Another
key result to prove is that certain p-adic representations we choose that come
from the Dwork motives is ordinarily automorphic. One input is the auto-
morphy lifting theorem in Allen et al.: (Potential automorphy over CM fields,
Cornell University, New York 2018) .

1 Introduction

In this paper we prove potential automorphy theorems for n-dimensional l-
adic and residual representations of the absolute Galois group of an imaginary
CM field.

The precise statement of the theorem for residual representations is as fol-
lowing.

Theorem 1.1 Suppose F is a CM number field, Fav is a finite extension of F
and n ≥ 2 is a positive integer. Let l be an odd prime number and suppose
that
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r : Gal(F/F) → GLn(Fls )

is a continuous semisimple representation. Then there exists a finite CM
Galois extension F ′/F linearly disjoint from Fav over F such that r |Gal(F/F ′)
is ordinarily automorphic.

We first breifly recall the definitions of the terms appearing in the theorem.
Recall that for E any CM (or totally real) field, we could attach to any

regular algebraic cuspidal automorphic representation π of GLn(AE ) an l-
adic Galois representation of GE satisfying certain local-global compatibility
condition by the main theorem of [9].

More precisely, fix an isomorphism Ql → C. For such a π , there is a
unique continuous semisimple representation

rl,ι(π) : GE → GLn(Ql)

such that, if p �= l is a rational prime above which π and E are unramified
and if v|p is a prime of E , then rl,ι(π) is unramified at v and

rl,ι(π)|ssWEv
= ι−1recEv (πv|det|(1−n)/2

v )

here recEv denotes the local Langlands correspondance for Ev and |ss denotes
the semisimplification.

Definition 1.2 For a p-adic local field L and a continuous representation
ρ : GL → GLn(Qp), we say it is ordinary with regular Hodge-Tate
weight if there exists a weight λ = (λτ,i ) ∈ ({(a1, . . . , an)|a1 ≥ · · · ≥
an})Hom(L ,Qp) =: (Zn+)Hom(L ,Qp) such that there is an isomorphism:

ρ ∼

⎛
⎜⎜⎜⎝

ψ1 ∗ ∗ ∗
0 ψ2 ∗ ∗
...

. . .
. . . ∗

0 · · · 0 ψn

⎞
⎟⎟⎟⎠ ,

where for each i = 1, . . . , n the character ψi : GL → Q
×
p agrees with the

character

σ ∈ IL 
→
∏

τ∈Hom(L ,Qp)

τ (Art−1
L (σ ))−(λτ,n−i+1+i−1)

on an open subgroup of the inertia group IL .
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Definition 1.3 For a Galois representation r : GE → GLn(Ql) , we say it
is automorphic if there exists a regular algebraic cuspidal automorphic rep-
resentation π such that r ∼= rl,ι(π) . And for a residual representation r :
GE → GLn(Fl) , we say it is automorphic if there exists a lift r of r that is
automorphic. We say it is ι-ordinarily automorphic if there exists an automor-
phic lift r ∼= rl,ι(π) such that the automorphic representation π it corresponds
to is ι-ordinary (in the sense of [8] Definition 5.3) at all places v above l.

We also remark here that restricting to some GF ′ for a Galois extension
F ′/F that avoids a prescribed finite extension Fav of F can ensure that the
image r(GF ′) does not shrink.

Combine our main theorem for residual representation Theorem 1.1 with
the automorphy lifting theorem 6.1.2 from [1] and the main result of [14], we
obtain a potential automorphy theorem for a single l-adic Galois representa-
tion into GLn .

Theorem 1.4 Suppose F is a CM number field, Fav is a finite extension of
F and n ≥ 2 is a positive integer. Let l be an odd prime number. Fix an
isomorphism ι : Ql → C and suppose that

r : GF → GLn(Ql)

is a continuous representation satisfying the following condition:

• r is unramified almost everywhere.
• For each place v|l of F, the representation r |GFv

is potentially semistable,
ordinary with regular Hodge-Tate weights.

• r is absolutely irreducible and decomposed generic (See [1] Definition
4.3.1). The image of r |GF(ζl )

is enormous (See [1] Definition 6.2.28).
• There exists σ ∈ GF − GF(ζl ) such that r(σ ) is a scalar.

Then there exists a finite CM Galois extension F ′/F linearly disjoint from
Fav over F such that r |GF ′ is ordinarily automorphic.

Previously there are potential automorphy results for r and r that take value
in GSp2n ( [10]) or more generally, the subgroup of GLn that preserves a
nondegenerate form up to a scalar ( [4]). The strategy of proving the main
theorems in this paper is based on the strategy of proving theorems in these
paper. But there are also many crucial differences.

The main idea of the proof of Theorem 1.1 is as the following. The prime
l is given. But we will choose some positive integer N and another prime l ′
with good properties. Note that this choice make certain arguments for the
l ′-related objects easier than their l-related counterpart.
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Consider the Dwork family Y ⊂ PN−1 × (P1\(μN ∪ {∞})) defined by the
following equation:

XN
1 + XN

2 + +XN
N = Nt X1X2 . . . XN .

for the good N we will choose. The variety comes equipped with an action of
the group

H0 := {(ξ1, . . . , ξN ) ∈ μN
N : ξ1 · · · ξN = 1}/μN .

(see Sect. 3). After picking a character χ of H0, we may consider the
motives such that their l(or l ′)-adic realisation is the χ -eigenspace of the
(N − 2)-th(middle degree) etale cohomology of any fibre of this family with
coefficients Ql (or Ql ′). We will denote such l(or l ′)-adic cohomology of the
fibre over the point t as Vλ,t (or Vλ′,t ), where λ, λ′ is a place of Q(ζN ) above
l, l ′. Note that here we will choose a χ that is of a shape artificially made
to break the self-duality of the motive. However, the self-duality shape of the
Hodge-Tate weights will be preserved. In fact, they are a string of consecutive
integers. We will try to find a point t on the base defined over an extension
field F ′, such that the mod-l residual Galois representation V [λ]t given by the
fibre of the motive over t is isomorphic to the r in the theorem, while the mod-
l ′ residual Galois representation V [λ′]t given by the fibre of the motive over
t is isomorphic to rl ′,ι′(π1) for some known ordinarily automorphic represen-
tation rl ′,ι′(π1), both as representation of GF ′ . If such a point exists, then we
could apply ordinary automorphy lifting theorem 6.1.2 of [1] to see Vλ′,t is
automorphic, and conclude that Vλ,t is automorphic. Hence r is automorphic.

The above is a very rough summary of what we did in this paper. Let us be
more precise now.

The first problem that is worth more explanantion is the existence of such
a point t . Assume r and rl ′,ι(π) can be defined as representation over k(λ)

and k(λ′), where these are the residue fields for the places λ and λ′ of Z[ζN ].
The existence of such a point t is guaranteed by a careful study of the moduli
scheme that detects the isomorphisms between r × rl ′,ι(π) and the varying
V [λ]t×V [λ′]t as representation over k(λ)×k(λ′), such that the top wedge of
the isomorphism is fixed to be an a priori choice. Now the main property we
use to prove the existence of such a point t is the geometric connectivity of
the moduli variety. And the geomoretic connectivity is in turn deduced from
the result that the geometric monodromy map of this family surjects onto
SLn(k(λ)) × SLn(k(λ′)), over which the fiber over t of the moduli scheme
is a torsor. The proof of this surjectivity result involves combinatorial argu-
ments that precisely make use of the shape of the charater χ we choose. In
contrast, we know that if we had chosen the χ to be of some nice self-dual
form, then the image of the geometric monodromy map would be contained
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in some symplectic group Spn(k(λ)) × Spn(k(λ′)). We remark that in pre-
vious work, other authors have considered the moduli variety parametrizing
similar isomorphisms but with the condition that certain alternating forms on
both representation spaces need to be preserved, where the alternating form
on the varying cohomology is induced by Poincare duality and the self-dual
shape of the χ they chose.

In the above procedure, after showing that the geometric monodromy has
image in SLn(k(λ)) × SLn(k(λ′)) (using the shape of χ ), we see that the
spaces ∧n(V [λ]t × V [λ′]t ) as characters of GF does not depend on the base
point t . Thus to construct the moduli scheme, it suffices to construct a fixed
isomorphism between ∧n(r×rl ′,ι(π)) and ∧n(V [λ]t×V [λ′]t ) for any chosen
t an F point of the base. However, this isomorphism does not a priori exist. We
get around this problem by restricting to a smaller GF ′ and twisting r×rl ′,ι(π)

by a character χ1 × χ2 : GF ′ → k(λ)× × k(λ′)×, so that we would like
to construct the moduli scheme as the one detecting isomorphisms between(
r × rl ′,ι(π)

) ⊗ (
χ1 × χ2

)
and V [λ]t × V [λ′]t . Note that we need χ1 × χ2

to take value in exactly k(λ)× × k(λ′)× because we want the fiber of the
moduli scheme to be a torsor under the image SLn(k(λ)) × SLn(k(λ′)) of
the geometric monodromy map because this is crucial to show the geometric
connectivity of the moduli scheme.

Now choosing t = 0, to construct an isomorphism between det
((
r × rl ′,ι

(π)) ⊗ (
χ1 × χ2

))
and det

(
V [λ]t × V [λ′]t

)
, amounts to taking an “n-th

root” of the character (det V [λ]0 × V [λ′]0)−1 ⊗ det(r × rl ′,ι(π)) as char-
acter valued in k(λ)× × k(λ′)×, where V [λ]0, V [λ′]0 denotes the mod l, l ′
cohomology of the fibre over 0. The first step to make this adjustment work
is that we need

• (det V [λ]0 × V [λ′]0)−1 ⊗ det(r × rl ′,ι(π)) has image in (k(λ)×)n ×
(k(λ′)×)n as a GF ′ representation.

We remark that this condition is proved by a computation for the fibre over
0, where there is a good description. The computation is done in 3.9. Then,
we will use Lemma 2.1 to deduce that this condition above enables us to
construct such an “n-th root” of character while also making sure that F ′
satisfies certain linearly disjoint properties.

The second problem is that to apply ordinary automorphy lifting theorems,
we also need to show Vλ′,t is ordinary (as GF ′

v′
representation where v′ is any

l ′-adic places of F ′) and Vλ,t (as a GF ′
v

representation where v is any l-adic
place of F ′) is ordinarily automorphic.

The proof of Vλ′,t being ordinary is relatively easy. We just pick t ∈ A1(F ′)
that is l ′-adicly close to 0. Applying 2.4, we may check ordinarity via an
examination of Dcris(Vλ′,t ) . The comparison theorem identifies Dcris(Vλ′,t )
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and Dcris(Vλ′,0), and hence reduces the proof to the case t = 0. In that case,
Vλ′,0 actually splits into characters as a GF ′ representation.

To prove that Vλ,t is ι-ordinarily automorphic (with the assumption that
Vλ′,t is ι′-automorphic and Vλ′,t = rl ′,ι′(π)) is harder and relies on a maximal
unipotence result of the monodromy of Vλ′,t , as well as Varma’s local-global
compatibility result as in [17]. The idea is to choose t ∈ A1(F ′) that has l-
adic valuation < 0. Then an argument similar to that of Lemma 1.15 part 2 of
[10] shows that the nilpotent operator N in the Weil-Deligne representation
associated to Vλ′,t (as a GF ′

v
representation, where v is an l-adic place of F ′)

is maximally nilpotent. Then the result of [17] shows that πv is Steinberg.
Hence πv being ι-ordinary follows from a variant of Lemma 5.6 of [8].

The difference between the case of l and l ′ arises partially from the fact
that l is given but we may choose l ′ arbitrarily.

Lastly the π1 we use such that rl ′,ι′(π1) is ordinarily automorphic and lift
V [λ′]t is such that rl ′,ι′(π1) is a symmetric tensor power of the Tate module
of an elliptic curve over Q.

With the above input and an awkward choice of the character χ of H0, plus
several technical algebraic number theory lemmas listed in Sect. 2, we will
finally prove the main theorems in Sect. 4.

2 Several lemmas

In this section we prove several technical lemmas and fix some notation that
will appear later in the paper. Throughout this section, l is an odd prime.

Let us first state the properties we will use throughout the paper regarding
the notion of linearly disjoint fields.

• If A and B are extensions of C then A, B linearly disjoint over C implies
A ∩ B = C , and the converse is true if A or B is finite Galois over C .

• If A ⊃ B ⊃ C and D ⊃ C with A and D linearly disjoint over C , then A
and BD are linearly disjoint over B. In particular A ∩ BD = B.

Lemma 2.1 For a CM field M, a finite Galois extension F0/Q , a finite field
Flr containing all n-th roots of unity, and a character χ : GM → (F×

lr )
n,

there exists a finite totally real Galois extension L/Q linearly disjoint with
F0 over Q and such that if we denote F1 = LM , there exists a character
ψ : GF1 → F×

lr such that ψ
n = χ |GF1

.

Proof Consider the long exact sequence associated to the following short
exact sequence of GM -module with trivial action:

0 Z/mZ F×
lr (F×

lr )
m 0,

(·)n
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where we write n = lam, l � m, we have:

H1(GM , F×
lr ) H1(GM , (F×

lr )
m) H2(GM , Z/mZ).

(·)n δ

Now χ ∈ H1(GM , (F×
lr )

m) . If we let χ̃ = δ(χ) , we are reduced to finding
a Galois CM extension F1 ⊃ M of the form F1 = LM for some L linearly
disjoint with F0 over Q such that the obstruction χ̃ is killed by the restriction
map H2(GM , Z/mZ) → H2(GF1, Z/mZ).

Consider the map H2(GM , Z/mZ) → ∏
v H2(GMv , Z/mZ) given by

restriction. The image actually lands in
⊕

v H2(GMv , Z/mZ) because any
element in H2(GM , Z/mZ) is inflated from some φ ∈ H2(Gal(M ′/M),

Z/mZ) for some M ′/M a finite extension and for those primes v of M that
is unramified in M ′, the image of φ in H2(GMv , Z/mZ) by restriction actu-
ally lands in H2(Gal(Mnr

v /Mv), Z/mZ) , which is 0 since the cohomological
dimension of Ẑ is 1.

The first step is to take an CM extension F2/M that is of the form L2M for
a totally real L2 Galois over Q that is linearly disjoint with F0 over Q, such
that in the following commutative diagram, the image of χ̃ in the upper right
corner is 0:

H2(GF2, Z/mZ)
⊕

w H2(GF2,w , Z/mZ)

H2(GM , Z/mZ)
⊕

v H2(GMv , Z/mZ)

Let
⊕

χ̃v be the image of χ̃ in
⊕

v H2(GMv , Z/mZ) . If we can take a
CM extension F2/M of the above form such that for any v with χ̃v �= 0
and w|v a place of F2, ζm ∈ F2,w and m|[F2,w : Mv(ζm)], then the image
of χ̃v restricting to H2(GF2,w , Z/mZ) is 0, since H2(GMv(ζm), Z/mZ) ∼=
H2(GMv(ζm), μm) ∼= 1

mZ/Z, and the restriction map 1
mZ/Z ∼= H2(GMv(ζm),

μm) → H2(GF2,w , μm) ∼= 1
mZ/Z is multiplication by [F2,w : Mv(ζm)].

We can construct such an extension F2/M coming from L2/Q linearly
disjoint with F0 over Q with prescribed local behavior for a finite number of
primes v of M as the following:

Let S1 be the set of rational primes lying under the primes v of M such
that χ̃v �= 0. Let S2 ={∞} and S = S1 ∪ S2. For each q ∈ S1, let Mq

denote the composite of the image of all embeddings τ : M ↪→ Qq . We fix
an extension Eq/Mq(ζm) of order divisible by m and Galois over Qq . Now
we apply Lemma 4.1.2 of [5] to F0/Q and the set of primes S with prescribed
local behavior:
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• Eq/Qq for all q ∈ S1
• Trivial extension R/R for ∞ ∈ S2

We get a finite totally real Galois extension L2/Q that is linearly disjoint
with F0 over Q and that for any w a place of L2 over a q ∈ S1, (L2)w ∼= Eq
we defined above over Qq . Take F2 = ML2. For any prime v of the field
M with χ̃v �= 0 and v′ a prime of F2 over v, then q = v′|Q ∈ S1, thus
F2,v′ ⊃ (L2)v′|L2

⊃ Eq and so Gal(F2,v′/Mv(ζm)) is of order divisible by m.
So we have constructed the desired L2 and F2.

Now for any number field F and GF module A, let Xi (F, A) be

ker(Hi (GF , A) →
∏
v

Hi (GFv , A))

where the product is over all places v of F (so is every product that follows).
Thus the first step yields a finite CM Galois extension F2/M that comes

from some L2/Q as described above such that the image χ̃1 of χ̃ in
H2(GF2, Z/mZ) actually lies in X2(F2, Z/mZ) .

The second step is to analyze X2(F2, Z/mZ) and kill it after some further
CM extension F1/F2 where F1 = L1L2M , with L1 totally real Galois over
Q that would be specified later and such that L := L1L2 is linearly disjoint
with F0 over Q.

Poitou–Tate duality(cf. [13] Theorem 8.6.7) gives a perfect pairing

〈·, ·〉 : X2(F2, Z/mZ)×X1(F2, μm) → Q/Z

satisfying the following compatibility for any finite extension F1/F2 and x ∈
X1(F1, μm), y ∈ X2(F2, Z/mZ) :

〈x, Res(y)〉 = 〈Cor(x), y〉

So we now choose such an extension F1/F2 such that Cor(x) = 0, ∀x ∈
X1(F1, μm), then by the perfectness, Res(y) = 0, ∀y ∈ X2(F2, Z/mZ).

Write m = 2r
∏s

i=1 prii . Decompose X1(F2, μm) = X1(F2, μ2r ) ×∏s
i=1 X

1(F2, μp
ri
i
). The following lemma is basically Theorem 9.1.9 of [12].

Lemma 2.2 For any number field F, X1(F, μpr ) = 0 or Z/2Z. The later
case could happen only when p = 2.

In any case,X1(F, μpr ) = X1(F(μpr )/F, μpr ) (defined in the proof) .
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Proof Set K = F(μpr ) . We have the following commutative diagram where
each row and column (except the left column) are exact:

0 H1(GK , μpr )
∏

w H1(GKω , μpr )

0 X1(F, μpr ) H1(GF , μpr )
∏

v H1(GFv , μpr )

0 X1(K/F, μpr ) H1(Gal(K/F), μpr )
∏

v H1(Gal(Kw/Fv), μpr )

where X1(K/F, μpr ) is defined by the exactness of the bottom row and the
top row is exact because an element in the kernel corresponds to a cyclic
extension of K of order dividing pr that splits at all primes w of K , which
has to be trivial. (Again μpr = Z/prZ as a GK module and H1 is just Hom.)

A diagram chasing gives that X1(F, μpr ) = X1(K/F, μpr ). By Propo-
sition 9.1.6 of [12], H1(Gal(K/F), μpr ) = 0 except when

• p = 2, r ≥ 2
• and −1 is in the image of Gal(K/F) → (Z/2rZ)×

In this case, H1(Gal(K/F), μ2r ) = Z/2Z. As a subspace of H1

(Gal(K/F), μ2r ), X1(F, μpr ) = X1(K/F, μpr ) = 0 or Z/2Z. ��
Recall the relation Cor ◦ Res = [F1 : F2] and the commutative diagram:

H1(GF2, μ2r ) H1(GF1, μ2r )

H1(Gal(F2(μ2r )/F2), μ2r ) H1(Gal(F1(μ2r )/F1), μ2r )

Res

Res

The bottom row is an isomorphism if we pick F1 linearly disjoint with
F2(μ2r ) over F2. If this is the case and 2 | [F1 : F2], then by Lemma 2.2

Cor(X1(F1, μm)) = Cor(X1(F1, μ2r ))

= Cor(X1(F1(μ2r )/F1, μ2r ))

⊂ Cor(H1(Gal(F1(μ2r )/F1), μ2r ))

= Cor(Res(H1(Gal(F2(μ2r )/F2), μ2r )))

= [F1 : F2] · H1(Gal(F2(μ2r )/F2), μ2r )

= 0.

(2.1)

Here when we apply Cor to some group, we always mean Cor applied to
the image of this group in H1(GF1, μ2r ).
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Now we construct an L1 such that the associated extension F1/F2 satisfies
the property that F1 is linearly disjoint with F2(μ2r ) over F2 and 2 | [F1 : F2].
Choose a rational prime p and a local field Ep Galois over Qp that contains
M ′

p, the composite of the image of all embeddings τ : F2 ↪→ Qp, and is
of order divisible by 2 over it. We again apply Lemma 4.1.2 of [5] to the
extension F0F2(μ2r )/Q and the set of primes S consisting of p and ∞ with
prescribed local behavior:

• Ep/Qp
• Trivial extension R/R for the place ∞.

We get a totally real Galois extension L1/Q linearly disjoint with
F0F2(μ2r ) over Q. The associated F1 = F2L1 = ML2L1. Then 2 | [F1 : F2]
because for any place v of F1 above p, (F1)v ⊃ (L1)v|L1

∼= Ep ⊃ (F2)v|F2
and the last inclusion is of order divisible by 2. The property that F1 = F2L1
and F2(μ2r ) are linearly disjoint over F2 follows from the fact that L1 and
F2(μ2r ) are linearly disjoint over Q. Now L1 and F0F2 are linearly dis-
joint over Q implies that L1L2 and F0F2 are linearly disjoint over L2. Hence
L1L2 ∩ F0 = L1L2 ∩ F0F2 ∩ F0 = L2 ∩ F0 = Q.

We conclude that the image of χ̃ in H2(GF1, Z/mZ) is 0 by (2.1) and thus
we can take an n-th root of χ |GF1

for F1 = LM ⊃ M and L = L1L2 we
constructed above finite totally real Galois over Q and linearly disjoint with
F0 over Q.

��
Lemma 2.3 Let l be a rational prime. Given any positive integer s and a
finite set of rational primes S, we can find a positive integer N not divisible
by any primes in S and l, and satisfying :

• Let r be the smallest positive integer such that N | lr − 1, then s | r.
• When r is even, N � lr/2 + 1

Proof Factorize s as s = 2a0

m∏
i=1

paii . View p0 = 2. We will construct a

sequence of pairwise coprime integers Mi (not divisible by any rational prime
in S) and a sequence of integers ti with ti ≥ ai for i = 0, 1, . . . ,m, such that

Mi | lr − 1 if and only if ptii | r . Set N =
m∏
i=0

Mi and consider the order of l

in (Z/NZ)× ∼=
m∏
i=1

(Z/MiZ)×, we see that the first condition is satisfied. For

the second condition (if a0 > 0), we need to make M0 satisfy the following
extra property:

M0 � l2
t0−1 + 1.
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Now we work on i = 0 first. Take t0 > a0 large enough such that t0 > 2 and
for each rational prime q ∈ S ∪ {2}, one of the following holds:

(1) q � l2
k − 1 for any k > 0,

(2) q | l2t0−3 − 1.

The fact t0 > 2 gives l2
t0−2 + 1 ≡ 2 mod 4 and l2

t0−1 + 1 ≡ 2 mod 4. Thus
we may choose an odd prime divisor A of l2

t0−2 + 1 and an odd prime divisor
B of l2

t0−1 + 1. We deduce that

AB | l2t0 − 1, B � l2
t0−1 − 1, A � l2

t0−1 + 1.

Take M0 = AB. Thus the smallest r such that M0 | lr − 1 is 2t0 and M0 �

l2
t0−1 + 1. Also, for q ∈ S, if q | M0, then q | l2t0−2 + 1 or q | l2t0−1 + 1.

In either case (1) won’t happen, so q | l2
t0−3 − 1. Thus q = 2. And this

gives a contradiction with AB being odd. We have constructed an M0 with
the property stated above.

Now we inductively construct Mi and ti ≥ ai such that

• Mi is not divisible by any rational primes in Si = {pi } ∪ S ∪ {rational
prime divisors of Mj for j < i} ∪ {l} ∪ {2}.

• The order of l in (Z/MiZ)× is ptii .

Choose ti > ai large enough, such that l p
ti−2
i > pi and for each rational

prime q ∈ Si , one of the following holds:

(1) q � l p
k
i − 1 for any k > 0,

(2) q | l pti−2
i − 1.

If q ∈ Si and q | l pti−1
i (pi−1) + . . .+ l p

ti−1
i + 1, then q | l ptii − 1 and so (1)

cannot hold. Hence q | l pti−2
i − 1. Thus l p

ti−1
i (pi−1) + . . . + l p

ti−1
i + 1 ≡ pi

mod q. We see q = pi . In this case, l p
ti−1
i ≡ (l p

ti−2
i )pi ≡ (1 + piu)pi ≡ 1

mod p2
i for some integer u , so l p

ti−1
i (pi−1) + . . . + l p

ti−1
i + 1 ≡ pi mod p2

i

and p2
i � l p

ti−1
i (pi−1) + . . .+ l p

ti−1
i + 1. Thus, the only prime in Si that divides

l p
ti−1
i (pi−1) + . . .+ l p

ti−1
i + 1 is pi and only to the first order. We may take an

odd prime divisor Mi of l p
ti−1
i (pi−1) + . . . + l p

ti−1
i + 1(> pi ) with Mi /∈ Si .

Now Mi | l p
ti
i −1, but if Mi | l p

ti−1
i −1, then l p

ti−1
i (pi−1)+. . .+l p

ti−1
i +1 ≡ pi

mod Mi . So Mi = pi giving a contradiction. The two condition on Mi is thus
satisfied.

Now take N = ∏m
i=0 Mi as promised. The smallest positive integer r such

that N | lr − 1 is 2t0
∏m

i=1 ptii , a multiple of s. For the second condition, we
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need to verify that N � lr/2 − 1 = l2
t0−1 ∏m

i=1 p
ti
i − 1 (if t0 > 0). We break

into two cases: If m > 0, i.e. there are odd prime divisors of s, then from

M1 | l2t0−1 ∏m
i=1 p

ti
i − 1 and M1 is an odd divisor of N , we see N � lr/2 + 1.

If m = 0, then the construction stops at the first step and we have seen that
M0 = N � l2

t0−1 + 1.
��

The following lemma is taken from [4] Lemma 2.2. The lemma will be
used to prove that certain representations coming from the Dwork motive are
ordinary.

Lemma 2.4 Suppose that a ∈ (Zn)Hom(F,Ql ),+ and that

r : Gal(F/F) → GLn(Ql)

is crystalline at all primes v | l. We think of v as a valuation v : F×
v � Z. If

τ : F → Ql lies above v, suppose that

dimQl
gri (r ⊗τ,Fv BdR)

Gal(Fv/Fv) = 0

unless i = aτ, j + n − j for some j = 1, . . . , n, in which case

dimQl
gri (r ⊗τ,Fv BdR)

Gal(Fv/Fv) = 1.

For v | l, let αv,1, . . . , αv,n denote the roots of the characteristic polyno-

mial of φ[F0
v :Ql ] on

(r ⊗τ,F0
v
Bcris)

Gal(Fv/Fv)

for any τ : F0
v ↪→ Ql . (Here F0

v is the maximal unramified subextension in
Fv . This characteristic polynomial is independent of the choice of τ .) Let valv
denote the valuation on Ql normalized by valv(l) = v(l). (Thus valv ◦ τ = v

for any τ : Fv ↪→ Ql .) Arrange the αv,i ’s such that

valv(αv,1) ≥ valv(αv,2) ≥ . . . ≥ valv(αv,n).

Then r is ordinary of weight a if and only if for all v | l and all i = 1, . . . , n
we have

valv(αv,i ) =
∑
τ

(aτ,i + n − i),

where τ runs over embedding F ↪→ Ql above v.
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Remark 2.5 We will use Dcris,τ (r), Dst,τ (r) to denote (r⊗τ,F0
v
Bcris)

Gal(Fv/Fv),

(r ⊗τ,F0
v
Bst)

Gal(Fv/Fv) resp. for any p-adic representation r and embedding
τ as above.

Below is a lemma regarding the standard big image condition and how
they behave under restriction to smaller absolute Galois group and taking
symmetric power. The lemma is taken from an old version of [1], but a part of
it disappears in the newest version of [1]. Thus, we state and prove it in this
section. The author claims no originality of the following lemma.

Throughout this paper, for any number field M , we use M̃ to denote its
normal closure over Q.

Lemma 2.6 Suppose F/Q is a finite extension with normal closure F̃/Q and
n ∈ Z>0. Suppose also that l > 2n+5 is a rational prime and that r : GF →
GL2(Fl) is a continuous representation such that r(GF̃ ) ⊃ SL2(Fl). Finally

assume F1/F is a finite extension that is linearly disjoint from F
ker r

over F.
Then:

(1) (Symmn−1r)(GF1(ζl )) is enormous.
(2) If F1/F is Galois and linearly disjoint over F from the normal closure H ′

of H = F̃ F
ker adr

over Q, then Symmn−1r |GF1
is decomposed generic.

Proof (1) This is Lemma 7.1.6(2) of [1].
(2) It suffices to show Symmn−1rGF2

is decomposed generic for some finite
extension F2/F1.

We may assume without loss of generality that F is Galois over Q. Now
by [6] Theorem 2.47(b), adr(GF ) = PGL2(k) or PSL2(k) for some finite
extension k/Fl . We first take an at most qurdratic extension E/F such that
adr(GE ) = PSL2(k). Then by Goursat Lemma, Gal(Ẽ/E) = (Z/2Z)r for

some r ≥ 0. Hence F
ker adr

and Ẽ are linearly disjoint over E by an analysis
of the simple factors of each Galois group. Thus adr(GẼ ) = PSL2(k) ⊃
PSL2(Fl). Now since E ⊂ F

ker adr
, Ẽ Ẽ

ker adr ⊂ ˜
F

ker adr = H ′, and so its
normal closure over Q is still H ′. Now F1 and H ′ linearly disjoint over F
implies that E1 := Ẽ F1 is linearly disjoint from H ′ over Ẽ as well. We there-
fore can assume (replacing F by Ẽ and F1 by E1) without loss of generality
that adr(GF ) = PSL2(k) and F is Galois over Q.

Now we choose a sequence of subfields F = F ′
0 ⊂ F ′

1 ⊂ · · · ⊂ F ′
s = F1

such that F ′
i is Galois over F ′

i−1 and Gal(F ′
i /F

′
i−1) is simple. Set F̃ ′

i to be
the normal closure of F ′

i over Q. Hence Gal(F̃ ′
i /F̃

′
i−1) is trivial if and only if

F ′
i ⊂ F̃ ′

i−1 and is of form �m
i for some m > 0 where �i = Gal(F ′

i /F
′
i−1)

otherwise (Goursat Lemma). Now if H ∩ F̃ ′
s = F , then we may apply Lemma

7.1.6 (3) of [1] to conclude.
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Otherwise, there should exist a minimal i such that H ∩ F̃ ′
i �= F . Since

Gal(H/F) = PSL2(k) is simple, we see that H ⊂ F̃ ′
i . Now minimality

gives F̃ ′
i−1 ∩ H = F , so that �m

i = Gal(F̃ ′
i /F̃

′
i−1) � Gal(H/F), thus �i =

PSL2(k), m > 0. We claim there exists σ ∈ GQ such that σH ⊂ F ′
i F̃

′
i−1. We

may write F̃ ′
i as the composite of σ j F ′

i F̃
′
i−1, where σ1, . . . , σm are elements of

GQ, the fields σ j F ′
i F̃

′
i−1 is Galois over F̃ ′

i−1 with Galois group PSL2(k), and
for any two disjoint subsets I, J of {1, . . . ,m}, the composite of σ j F ′

i F̃
′
i−1

for j ∈ I and the composite of σ j F ′
i F̃

′
i−1 for j ∈ J are linearly disjoint over

F̃ ′
i−1. Now because H ⊂ F̃ ′

i and F̃ ′
i−1 ∩ H = F , we see that H F̃ ′

i−1 is a
Galois subextension of F̃ ′

i /F̃
′
i−1 with Galois group PSL2(k). We may pick

the smallest j such that E j := (σ1F ′
i ) · · · (σ j F ′

i )F̃
′
i−1 ⊃ H F̃ ′

i−1. The mini-
mality gives that E j−1 as a Galois extension of F̃ ′

i−1 does not contain H F̃ ′
i−1,

whose Galois group over F̃ ′
i−1 is simple. It follows that E j−1 is linearly dis-

joint with H F̃ ′
i−1 over F̃ ′

i−1. Therefore, restriction map takes Gal(E j/E j−1)

onto Gal(H F̃ ′
i−1/F̃

′
i−1). Observe that E j−1 and σ j F ′

i F̃
′
i−1 are linearly dis-

joint over F̃ ′
i−1, hence Gal(E j/F̃ ′

i−1) = Gal(E j/E j−1)×Gal(E j/σ j F ′
i F̃

′
i−1).

The latter group Gal(E j/σ j F ′
i F̃

′
i−1) commutes with Gal(E j/E j−1) inside

Gal(E j/F̃ ′
i−1). Hence under restriction map, by the surjective result proved

above, Gal(E j/σ j F ′
i F̃

′
i−1) maps into the center of Gal(H F̃ ′

i−1/F̃
′
i−1), which

is trivial. This gives us that σ j F ′
i F̃

′
i−1 ⊃ H F̃ ′

i−1. Thus taking σ = σ−1
j is

sufficient for our claim.
Consider the image of Gal(F̃ ′

i−1F
′
i /F

′
i ) in Gal(σH/F) under the natural

restriction map. The fact m > 0 gives that F ′
i and F̃ ′

i−1 are linearly disjoint
over F ′

i−1, and so Gal(F̃ ′
i−1F

′
i /F

′
i ) and Gal(F̃ ′

i−1F
′
i /F̃

′
i−1) are commuting

subgroups of Gal(F̃ ′
i−1F

′
i /F

′
i−1). Under the restriction map to Gal(σH/F),

since σH ∩ F̃ ′
i−1 = F , Gal(F̃ ′

i−1F
′
i /F̃

′
i−1) surjects onto Gal(σH/F), so the

image of Gal(F̃ ′
i−1F

′
i /F

′
i ) lies in the center of Gal(σH/F) ∼= PSL2(k), and

hence is trivial. Therefore, σH ⊂ F ′
i , which contradicts the condition that H ′

and F1 are linearly disjoint over F . ��

3 Dwork motives

In this section, l can be any odd prime, n be any integer ≥ 2 and N is an
integer that is

• odd, not divisible by any prime factors of ln.
• N > 100n + 100

but note that the case n > 2 and n = 2 differs a little bit, in that there will
be a slight change of the category where the objects we considered lie in. The
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condition of N is clearly not optimal. However, since N will be an integer
that comes from a choice as in Sect. 4, rather than being given, it would not
affect the generality of our main results.

We assume in this section that F is a CM number field containing ζN .
We will modify the construction and argument in Sect. 4 of [4] to fit the

situation where no self-duality holds.
Let T0 = P1 − ({∞}∪μN )/Z[1/N ] with coordinate t and Y ⊂ PN−1 × T0

be a projective family defined by the following equation:

XN
1 + XN

2 + · · · + XN
N = Nt X1X2 · · · XN ,

π : Y → T0 is a smooth of relative dimension N − 2. We will write Ys for
the fiber of this family at a point s. Let H = μN

N/μN where the second μN
embeds diagonally and

H0 := {(ξ1, . . . , ξN ) ∈ μN
N : ξ1 · · · ξN = 1}/μN ⊂ H.

Over Z[1/N , ζN ] there is an H action on Y by:

(ξ1, . . . , ξN )(X1, . . . , XN , t) = (ξ1X1, . . . , ξN XN , (ξ1 · · · ξN )−1t).

Thus H0 acts on every fibre Ys , and H acts on Y0.
Fix χ a character H0 → μN of the form:

χ ((ξ1, . . . , ξN )) =
N∏
i=1

ξ
ai
i

where

(a1, . . . , aN ) = (1, 2, 4, 5, . . . , (N − n + 2)/2,

(N + n − 2)/2, . . . ,

N − 5, N − 4, N − 3, 0, 0, . . . , 0)

when n > 2 is odd,

(a1, . . . , aN ) = (1, 2, 3, 4, 5, 7, 8, . . . ,

(N − n + 3)/2,

(N + n − 3)/2, (N + n − 1)/2, . . . , N − 4, 0, 0, . . . , 0)

when n > 2 is even, and

(a1, . . . , aN ) = (1, 2, . . . (N − 3)/2, 0, 0, 0, (N + 3)/2, . . . , N − 1)
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when n = 2.
Note that 3, N −2, N −1 do not occur in (a1, . . . , aN ) when n > 2 is odd,

6, N −3, N −2, N −1 do not occur in (a1, . . . , aN ) when n > 2 is even, and
there are n + 1 of 0s in (a1, . . . , aN ) in these cases (n > 2).

This character is well-defined because
∑N

i=1 ai ≡ 0 mod N .
Let (b1, . . . , bn) be mutually distinct residue classes in Z/NZ such that

bi + a j �= 0 in Z/NZ for any j ∈ {1, . . . , N }. The (b1, . . . , bn) are uniquely
determined since there are precisely n different residue classes whose sum
with a j is nonzero in Z/NZ for any j ∈ {1, . . . , N }. Hence we have the
following expression:

{b1, . . . , bn} =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, 2, (N − n + 4)/2, (N − n + 6)/2, . . . ,

(N + n − 6)/2, (N + n − 4)/2, N − 3 n > 2 odd
1, 2, 3, (N − n + 5)/2, (N − n + 7)/2, . . . ,

(N + n − 7)/2, (N + n − 5)/2, N − 6 n > 2 even
(N − 1)/2, (N + 1)/2 n = 2

(when n = 3, 4, this is interpreted as {b1, . . . , bn} = {1, 2, N−3}, {1, 2, 3, N−
6} respectively.)

We have the following combinatorial property for the set {b1, . . . , bn} ⊂
Z/NZ.

Lemma 3.1 Let n > 2. Consider {b1, . . . , bn} as a subset of {0, 1, . . . , N −
1} ∼= Z/NZ. If for some α ∈ (Z/NZ)×, {αb1, . . . , αbn} = {b1, . . . , bn}
holds, then α = 1.

Proof If n is even, then 1 ∈ {b1, . . . , bn} and so α ∈ {b1, . . . , bn}. If α = 2,
then 2 ∈ {b1, . . . , bn} and so 4 ∈ {b1, . . . , bn}. But by the assumption N >

100n + 100, 3 < 4 < (N − n + 5)/2, so that 4 /∈ {b1, . . . , bn}. Thus α �= 2.
Same argument (3 < 9, 36 < (N − n + 5)/2) shows that α �= 3, N − 6.
If n = 4, we are done. For n ≥ 6, if α = (N + x)/2 for some x odd and
x ∈ [−n+5, n−5], then 2α = x ∈ {b1, . . . , bn}, but by assumption on N and
n, we have (N+n−5)/2 < N−n+5 ≤ N−1 and 1 ≤ n−5 < (N−n+5)/2.
Therefore {1, 3, . . . , n−5, N−n+5, N−n+7, . . . , N−1}∩{b1, . . . , bn} ⊂
{1, 3} and so x = 1 or 3. In either case, if α = (N+x)/2 ∈ {b1, . . . , bn}, then
(N−x)/2 ∈ {b1, . . . , bn}, so −x2/4 ≡ (N+x)/2·(N−x)/2 ∈ {b1, . . . , bn},
thus N − 1 ∈ {4b1, . . . , 4bn} or N − 9 ∈ {4b1, . . . , 4bn}. Viewed as a subset
of the representatives {0, 1, . . . , N − 1}, {4b1, . . . , 4bn} ⊂ {2, 6, . . . , 2n −
10, N − (2n − 10), N − (2n − 14), . . . , N − 2} ∪ {4, 8, 12, N − 24}. But
N − 1, N − 9 > 2n− 10, 12, so they must lies in {N − (2n− 10), N − (2n−
14), . . . , N − 2} ∪ {N − 24}, a contradiction.

If n is odd, again 1 ∈ {b1, . . . , bn} and so α ∈ {b1, . . . , bn}. If α = 2, then
again 4 ∈ {b1, . . . , bn}. But 2 < 4 < (N − n + 4)/2 gives a contradiction.
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Similarly α �= N − 3 because 2 < 9 < (N − n+ 4)/2. If n = 3 we are done.
For n ≥ 5, we have α = (N + x)/2 for some x odd and x ∈ [−n + 4, n − 4].
Then 2α = x ∈ {b1, . . . , bn}, but by assumption on N , we have (N + n −
4)/2 < N − n + 4 ≤ N − 1 and 1 ≤ n − 4 < (N − n + 4)/2. Therefore
{1, 3, . . . , n−4, N−n+4, N−n+6, . . . , N−1}∩{b1, . . . , bn} ⊂ {1, N−3}
and so x = 1 or −3. In either case, if α = (N + x)/2 ∈ {b1, . . . , bn}, then
(N−x)/2 ∈ {b1, . . . , bn}, so −x2/4 ≡ (N+x)/2·(N−x)/2 ∈ {b1, . . . , bn},
thus N−1 ∈ {4b1, . . . , 4bn} or N−9 ∈ {4b1, . . . , 4bn}. Viewed as a subset of
the representatives {0, 1, . . . , N−1}, {4b1, . . . , 4bn} ⊂ {2, 6, . . . , 2n−8, N−
(2n−8), N−(2n−12), . . . , N−2}∪{4, 8, N−12}. But N−1, N−9 > 2n−
8, 8, so they must lie in {N−(2n−8), N−(2n−12), . . . , N−2}∪{N−12},
a contradiction. ��

One reason for this choice is that when n > 2 we want to avoid mak-
ing the set {a1, . . . , aN } self-dual so that Lemmas 3.3 and 3.7 hold. And the
above lemma will be crucial to avoid self duality. On the contrary, if the set
{a1, . . . , aN } is chosen to be self-dual , the V [λ] defined below would be a
Galois representation that takes values in GSpn .

For any prime λ of Z[1/2N , ζN ] of residue characteristic l, we define the
lisse sheaf Vλ/(T0 × SpecZ[1/2Nl, ζN ])et by:

Vλ = (RN−2π∗Z[ζN ]λ)χ,H0

when n > 2. When n = 2, we use the same formula to define the object Uλ

for a prime λ of Z[1/2N , ζN ]+, following the notation of Sect. 4 in [4].
Similarly, for any nonzero ideal n of Z[1/2N , ζN ] of norm M , we can

define the lisse sheaf V [n]/(T0 × SpecZ[1/2NM, ζN ])et by:

V [n] = (RN−2π∗(Z[ζN ]/n))χ,H0

when n > 2, and we use the same formula to define the object U [n] for a
nonzero ideal n of Z[1/2N , ζN ]+.

Since H acts on Y0, we have the following decomposition:

Vλ,0 =
N⊕
i=1

Vλ,i , V [n]0 =
N⊕
i=1

Vi [n]

here Vλ,i and Vi [n] are the subspace of Vλ,0, V [n] where H acts by the char-
acter χi :

ξ →
N∏
j=1

ξ
a j+i
j
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Again, we write same decomposition in the case n = 2 as into Uλ,i and
Ui [n].

Fix an embedding τ : Q(ζN ) ↪→ C such that τ(ζN ) = e2π i/N . Let π̃ :
Y (C) → T0(C) denote the base change of π along τ , viewed as a map of
complex analytic spaces and VB be the locally constant sheaf over T0(C):

VB = (RN−2π̃∗Z[ζN ])χ,H0

when n > 2. And we denote the same object in the case n = 2 as UB .
Let τ also denote the induced base change (T0)C → T0×Spec Z[1/2NMl,

ζN ]. Under previous notation, VB ⊗Z[ζN ] Z[ζN ]λ corresponds to τ ∗Vλ under
the equivalence between locally constant analytic Z[ζN ]λ-sheaves on T0(C)

and locally constant etale Z[ζN ]λ-sheaves on (T0)C.
Similarly, VB⊗Z[ζN ]Z[ζN ]/n corresponds to τ ∗V [n] under the equivalence

between locally constant analytic Z[ζN ]/n-sheaves on T0(C) and locally con-
stant etale Z[ζN ]/n-sheaves on (T0)C.

Similar relation holds when n = 2, see [4] Sect. 4.
Let T ′

0 = P1 − {0, 1,∞} with coordinate t ′ and Y ′ ⊂ PN−1 × T ′
0 be a

projective family defined by the following equation:

X ′N
1 + X ′N

2 + · · · + t ′−1X ′N
N = N X ′

1X
′
2 · · · X ′

N

Then t ′ 
→ t N gives an N -fold Galois covering T0 − {0} → T ′
0 and X ′

1 →
X1, X ′

2 → X2 . . . , X ′
N → t XN identifies the pullback of π ′ : Y ′ → T ′

0 along
this covering with π : Y − Y0 → T0 − {0}. Over Z[1/N , ζN ], H0 acts on Y ′
by

(ξ1, . . . , ξN )(X ′
1, . . . , X

′
N , t ′) = (ξ1X

′
1, . . . , ξN X

′
N , t ′)

This H0 action is compatible with the H0 action on Y − Y0.
Let π̃ ′ : Y ′(C) → T ′

0(C) be the base change of π ′ along τ viewed as
a map of complex analytic spaces and let V ′

B = (RN−2π̃ ′∗Z[ζN ])χ,H0 be a
locally constant sheaf over T ′

0(C). Then the pullback of V ′
B along the covering

T0(C) − {0} → T ′
0(C) is naturally identified with VB over T0(C) − {0}.

Fix a nonzero base point t ∈ T0(C) and let t ′ be its image in T ′
0(C) . Now

we study the image of the monodromy representation:

ρt : π1(T0(C), t) → GL(VB,t ).

We in turn consider the monodromy representation:

ρt ′ : π1(T
′
0(C), t ′) → GL(V ′

B,t ′)
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Proposition 3.2 The sheaves Vλ, V [n], VB, V ′
B are locally free over Z[ζN ]λ,

Z[ζN ]/n, Z[ζN ], Z[ζN ] of rank n respectively .

Proof Locally freeness follows because the family is smooth and proper. For
the rank part, one only need to check at the fibre over 0 and apply Proposition
7.4 of [7].

��
Similar relation holds in the case n = 2, see [4] Sect. 4. The different

aspect for the case n = 2 is that we may use the locally constant sheaves
Vλ, V [n], VB defined there with coefficients Z[ζN ]+λ , Z[ζN ]+/n, Z[ζN ]+
respectively, such that Vλ ⊗Z[ζN ]+ Z[ζN ], V [n] ⊗Z[ζN ]+ Z[ζN ], VB ⊗Z[ζN ]+
Z[ζN ] are isomorphic to Uλ, U [n], UB respectively (in their notation). Now
we consistently work with Vλ, V [n], VB , regardless of whether n > 2 or
n = 2.

We already have the counterpart of Lemma 3.7 as provided by Corollary
4.7 of [4]. i.e. ρt (π1(T0(C), t)) = SL(VB,t/λ) when n = 2. So we focus on
the case n > 2 until the end of the proof of Lemma 3.7.

Let γ0, γ1, γ∞ be the loop around 0, 1,∞, generating π1(T ′
0(C), t ′) subject

only to the relation γ0γ1γ∞ = 1. Here we let γ0 be such oriented that its image
in Gal(T0(C) − {0}/T ′

0(C)) is e2π i/N = τ(ζN )

Lemma 3.3 (1) ρt ′(γ0) has characteristic polynomial
∏n

j=1(X − ζ
bj
N ) where

(2) ρt ′(γ∞) has characteristic polynomial (X − 1)n.

(3) ρt ′(γ1) is a transvection, i.e .: it is unipotent and ker(ρt ′(γ1) − 1) has
dimension n − 1.

Proof (1) The action of γ0 on V ′
B,t ′ , is equivalent to the ζN action on VB,0,

which is the scalar multiplication by ζ iN on the χi eigenspace of VB,0. By
proposition 7.4 of [7], the χi -eigenspaces are nonzero if and only if 0 /∈ {i +
a1, . . . , i + aN }, i.e. i ∈ {b1, . . . , bn}, in which case the eigenspaces are all
of rank 1. Hence the expression of the characteristic polynomial of ρt ′(γ0)

follows.
(2) Suppose Z0 is the variety T (XN

1 + XN
2 + · · · + XN

N ) = N X1X2 · · · XN

contained in PN−1 × A1. We use p to denote the projection Z0 → A1. So it
suffice to show the monodromy around 0 of the larger local system RN−2 p∗C
has charateristic polynomial a power of (X−1). We apply Lemma 2.1 of [14]
base changed to C via W (k)[T,U±] → C[T ], U 
→ 1, T 
→ T and a fixed

isomorphism of W (k)[ 1
p ] ∼= C, to conclude that there is a blowup X of Z0

that is an isomorphism outside the fiber over 0 and μN , and X is semistable
over the base A1\μN . Note that we call a map semistable if the divisor (T ) is
a reduced normal crossing divisor and does not have self crossing throughout
this paper.
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Because the blowup is an isomorphism outside the fiber over 0 and μN ,
we are reduced to show the same monodromy result for the family X over A1

around 0. Thus, by the vanishing cycle technique used to prove local mon-
odromy theorem (cf. [11] Theoreme 2.1.2 and its proof), we see that such
monodromy is unipotent. Note that this makes use of the fact that our normal
crossing divisor (T ) is reduced, i.e. the exponents ei as in the notation of [11]
are all 1 and hence so is their greatest common divisor e.

(3) The proof is the same as part 2 of Lemma 4.3 in [4]. ��

Now we study the image of the monodromy map. Let λ be a prime of
Z[ζN ] (of Z[ζN ]+ when n = 2) of characteristic l and ρt ′ : π1(T ′

0(C), t ′) →
GL(VB,t ′/λ), ρt : π1(T0(C), t) → GL(VB,t/λ) be the reduction of ρt ′ , ρt
by λ respectively.

We first give a description of ρt ′ by Lemma 3.3 and the following lemma.

Lemma 3.4 Let ρ be the representation ρ : π1(T ′
0(C), t ′) → GLn(Z[ζN ])

sending γ0 to B−1, γ∞ to A, and γ1 to BA−1, where

A =

⎛
⎜⎜⎜⎜⎜⎝

0 0 · · · 0 −An
1 0 · · · 0 −An−1
0 1 · · · 0 −An−2

. . .

0 0 · · · 1 −A1

⎞
⎟⎟⎟⎟⎟⎠

,

B =

⎛
⎜⎜⎜⎜⎜⎝

0 0 · · · 0 −Bn
1 0 · · · 0 −Bn−1
0 1 · · · 0 −Bn−2

. . .

0 0 · · · 1 −B1

⎞
⎟⎟⎟⎟⎟⎠

,

and Ai , Bi ∈ Z[ζN ] are the coefficients of the expansions:

(X − 1)n = Xn + A1X
n−1 + · · · + An,

n∏
i=1

(X − ζ
−bi
N ) = Xn + B1X

n−1 + · · · + Bn.

Then as representation into GLn(C), ρt ′ and ρ are equivalent.
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Proof See Theorem 3.5 of [3]. Observe also that ρ(γ1) = BA−1 has the form

⎛
⎜⎜⎜⎜⎜⎝

Cn 0 · · · 0 0
Cn−1 1 · · · 0 0

. . .

C2 0 · · · 1 0
C1 0 · · · 0 1

⎞
⎟⎟⎟⎟⎟⎠

with all the Ci ∈ Z[ζN ]. ��
Note that the matrix A actually has minimal polynomial (X − 1)n and is

conjugate to ρt ′(γ∞). We have the following corollary.

Corollary 3.5 ρt ′(γ∞) has minimal polynomial (X − 1)n and hence so is the
image of the monodromy around∞ under ρt .

In the following, we will use the terms “maximally unipotent” and “maxi-
mally nilpotent” to refer to the properties mentioned above.

Definition 3.6 For a unipotent (resp. nilpotent) linear operator φ on an n-
dimensional vector space, we say it is maximally unipotent (resp. maximally
nilpotent) if its minimal polymial is (X − 1)n (resp. Xn).

Let ρ : π1(T ′
0(C), t ′) → GLn(Z[ζN ]/λ) be the reduction of ρ with respect

to λ. (Following the argument of proposition 3.3 of [3]) Then if ρ has block
upper-triangular form when base changed to k(λ), we see ρ(γ1) − 1 would
vanish on one of the two blocks since it is a transvection, so that the eigen-
value of ρ(γ0) and ρ(γ∞) would be the same on that block, which gives a
contradiction because none of the bi is 0. Thus ρ is absolutely irreducible.
Let ρt ′ : π1(T ′

0(C), t ′) → GL(VB,t , /λ) be the reduction of ρt ′ by λ. It has
the same trace with ρ by Lemma 3.4. So their semisimplification are equiva-
lent and thus they are equivalent and ρt ′ is absolutely irreducible.

Lemma 3.7 Assume the residue field k(λ) of λ is Flr (So r is the smallest
integer such that N | lr − 1). Under the assumption that N � lr/2 + 1 if
r is even and n > 2, we have that ρt ′(π1(T ′

0(C), t ′)) = SL(V ′
B,t , /λ) and

ρt (π1(T0(C), t)) = SL(VB,t/λ).

Proof The case when n = 2 is already resolved by Lemma 4.6 of [4]. We
now focus on the case n > 2.

Let H be the normal subgroup of π1(T ′
0(C), t ′) generated by γ1. Then

π1(T ′
0(C), t ′)/H is cyclic, and is generated by γ0H or γ∞H . Therefore

the index [ρt ′(π1(T ′
0(C), t ′)) : ρt ′(H)] divides both the order of ρt ′(γ0)

and ρt ′(γ∞). The former is a divisor of N and the latter is an l-power, thus
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ρt ′(π1(T ′
0(C), t ′)) = ρt ′(H). So ρt ′(π1(T ′

0(C), t ′)) is generated by transvec-
tions, hence by the main theorem of [18], ρt ′(π1(T ′

0(C), t ′)) is conjugate in
GLn(k(λ)) to one of the groups SLn(k), Spn(k) or SU (n, k) for some sub-
field k ⊂ k(λ). Here SU (n, k) is defined when [k : Fl] even:

SU (n, k) := {g ∈ SLn(k) : σ(g)t g = 1n},
where σ is the unique order 2 element in Gal(k/Fl). We want to show
ρt ′(π1(T ′

0(C), t ′)) = SLn(k(λ)) by excluding the other cases.

• If ρt ′(π1(T ′
0(C), t ′)) is conjugate in GLn(k(λ)) to one of the groups

SLn(k), Spn(k) or SU (n, k) for some proper subfield k � k(λ), then
there exists a nontrivial σ ∈ Gal(k(λ)/Fl) that preserve the eigenvalues
for any elements in ρt ′(π1(T ′

0(C), t ′)). Consider ρt ′(γ0), this would con-
tradict Lemma 3.1.

• If ρt ′(π1(T ′
0(C), t ′)) is conjugate to Spn(k(λ)) , by Proposition 6.1 of [3],

we have

{b1, . . . , bn} = {−b1, . . . ,−bn},
which contradicts Lemma 3.1.

• If ρt ′(π1(T ′
0(C), t ′)) is conjugate to SU (n, k(λ)), then we are in the sit-

uation r = [k(λ) : Fl] is even. Take the eigenvalue of both sides of the
equation σ(ρt ′(γ0)) = (tρt ′(γ0))

−1. we have

{lr/2b1, . . . , l
r/2bn} = {−b1, . . . ,−bn}

By Lemma 3.1, we must have lr/2 ≡ −1 mod N . This contradicts the
condition that N � lr/2 + 1 if r is even.

Thus ρt ′(π1(T ′
0(C), t ′)) = SLn(k(λ)) . View ρt as defined on π1(T0(C) −

{0}, t) via the surjection π1(T0(C)−{0}, t) → π1(T0(C), t). Since π1(T0(C)−
{0}, t) � π1(T ′

0(C), t ′) with quotient group cyclic of order N , we have
ρt (π1(T0(C) − {0}, t)) � SLn(k(λ)) with quotient cyclic of order divid-
ing N . Now as the only cyclic composition factor of SLn(k(λ)) have order
dividing n, we see ρt (π1(T0(C), t)) = ρt (π1(T0(C) − {0}, t)) = SLn(k(λ)).

��
Given any nonzero ideal n of Z[1/2N , ζN ] (of Z[1/2N , ζN ]+ when n = 2)

and any finite free rank-n Z[ζN ]/n (Z[ζN ]+/n when n = 2)-module W with
a continuous GF -action, we can view W as a lisse sheaf on (Spec F)et . Now
∧nV [n] is a lisse sheaf over (T0)F of rank 1, and the associated monodromy
representation det ρ : π1(T0, t) → GL(∧nV [n]t ) restricted to π

geom
1 (T0, t)

is trivial since det(γ0) = det(γ1) = det(γ∞) = 1 and the analytic π1 is dense
in π

geom
1 (T0, t). Thus det ρ factors through π1(Spec F) = GF .
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Suppose we are given an isomorphism of lisse sheaf over (T0)F via some
prescribed isomorphism of GF characters:

φ :
n∧

W(T0)F →
n∧

V [n].

Let φS denote the base change of φ to some scheme S over (T0)F . Define the
moduli functor TW as following:

TW : (Sch/(T0)F ) → (Sets)

S 
→ {ψ ∈ IsomS(WS, V [n]S) : ∧nψ = φS}
It is representable by a smooth TW /(T0)F .

Proposition 3.8 Under the notation and assumption above, if n = P1P2,
whereP1,P2 are two prime ideals of Z[ζN ] having different residue charac-
teristic l1, l2 (prime to 2N) respectively. If each of the li satisfy the following
condition:

• if n > 2 the smallest positive r such that N | lri − 1 is even, then N �

lr/2
i + 1.

and max{l1, l2} > 10, then TW is geometrically connected.

Proof Since π1(T0(C), t) → SL(VB,t/P1) and π1(T0(C), t) → SL(VB,t/

P2) are surjective by Lemma 3.7 and our condition, by Goursat Lemma we
see that there exist isomorphic quotient φ : SLn(Flr1

)/H1 ∼= SLn(Fls2
)/H2

such that the image of π1(T0(C), t) in SL(VB,t/n) is the preimage of the
diagonal {(t, φ(t)) ∈ SLn(Flr1

)/H1 × SLn(Fls2
)/H2} under the natural quo-

tient map. Here we let the residue field of P1,P2 be Flr1
, Fls2

respectively.
Assume without loss of generality that l1 > 10. Then the only proper

normal subgroups of SLn(Flr1
) are contained in its center and the quotient

group PSLn(Flr1
) is a simple group. Thus if SLn(Flr1

)/H1 is not trivial, then
it must have a Jordan-Holder factor isomorphic to PSLn(Flr1

). Since l1 > 10,
any Jordan-Holder factor of SLn(Fls2

) with l2 �= l1 is not isomorphic to
PSLn(Flr1

) since PSLn(Flr1
) is simple non-Abelian and PSLn(Flr1

) is not
isomorphic to PSLn(Fls2

) by Theorem 2 of [2]. This contradiction gives us
SLn(Flr1

)/H1 = 1 and the map π1(T0(C), t) → SL(VB,t/n) is surjective.
Hence for any t ∈ T0(C) and any two geomereic points of TW above it

which correspond to two isomorphisms ψ1, ψ2 : W → V [n]t that respects
φ (not necessarily respecting any Galois action because the points are geo-
metric, hence such points always exist), we can pick a path γ ∈ π

geom
1 (T0, t)

such that its image under the monodromy map is ψ2 ◦ ψ−1
1 . Going along γ

induces a path in TW (C) connecting ψ1 and ψ2 (viewed as points in TW (C)),
so geometrically connectivity follows. ��
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Lemma 3.9 Let ζN ∈ F, λ is a prime of Q(ζN ) (Q(ζN )+ when n = 2) over
the fixed prime l and k(λ) be the residue field, then viewing det V [λ] as a GF
representation as explained above, we have det V [λ](GF ) ⊂ (F×

l2
k(λ)×)n.

Proof By the analysis before, it suffices to calculate the GF action on Vλ,0 =
⊕N

i=1Vλ,i = ⊕N
i=1H

N−2(Y0, Z[ζN ]λ)χi ,H , where Y0 is the Fermat hypersur-
face XN

1 + · · · + XN
N = 0 in PN−1 and χi : H → μN is a character defined

by:

ξ = (ξ1, . . . , ξN ) 
→
N∏
j=1

ξ
a j+i
j .

By [7] Proposition 7.10, Vλ,i �= 0 (in fact 1-dimensional) only when i ∈
{b1, . . . , bn}, and Frobv acts on it by a scalar q−1

N∏
j=1

g(v, a j + i) , where v is

any place of F whose residue characteristic does not divide N or l, q = #k(v),
and g(v, a) (for a ∈ Z/NZ) is the Gauss sum defined with respect to an fixed
additive character ψ : Fq → (Ql)

×:

g(v, a) = −
∑

x∈F×q

t (x
1−q
N )aψ(x)

here we also fix an isomorphism t from the group of N -th roots of unity in
F×
q and the group of N -th roots of unity in Ql . We remark that each g(v, a)

depends on the choice of ψ but q−1
N∏
j=1

g(v, a j + i) does not.

Thus Frobv acts as

q−n
n∏
j=1

N∏
i=1

g(v, ai + b j )

under det Vλ,0.
Considering the choice of ai and b j , the product can be rewritten as

n∏
j=1

N∏
i=1

g(v, ai + b j ) = (

n∏
j=1

g(v, b j ))
n

n∏
j=1

∏
s �=−bk ,∀k

g(v, s + b j )

= (

n∏
j=1

g(v, b j ))
n(

∏
s �=0

g(v, s))n/
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∏
i, j∈{1,...,n},i �= j

g(v, b j − bi )

= (

n∏
j=1

g(v, b j ))
n(

∏
s �=0

g(v, s))n/
∏

i, j∈{1,...,n},i< j

q

= (

n∏
j=1

g(v, b j ))
n(q(N−1)/2)n/qn(n−1)/2 (3.1)

for v whose residue characterisitc is odd, and here s always ranging through
the residue class in Z/NZ. In the last two steps, we use that for any nonzero
a ∈ Z/NZ,

g(v, a)g(v,−a) = (−1)a
1−q
N q = q.

We further verify that
n∏
j=1

g(v, b j ) ∈ Ql(ζN ) by checking: ∀σ ∈ GQl (ζN ),

if σ(ζp) = ζ ap (p is the residue characteristic of v), then

σ(

n∏
j=1

g(v, b j )) = σ(

n∏
j=1

∑

x∈F×q

−t (x
1−q
N )b jψ(x))

=
n∏
j=1

∑

x∈F×q

−t (x
1−q
N )b jψ(x)a

=
n∏
j=1

∑

x∈F×q

−t ((a−1x)
1−q
N )b jψ(x)

=
n∏
j=1

t (a
q−1
N )b j

n∏
j=1

∑

x∈F×q

−t (x
1−q
N )b jψ(x)

=
n∏
j=1

g(v, b j ) (3.2)

since
∑n

j=1 b j = 0 mod N .

This suffices when n > 2. When n = 2, we have to show
n∏
j=1

g(v, b j ) ∈

Ql(ζN )+. For this, it suffices to take a σ ∈ GQl (ζN )+ such that σ(ζN ) = ζ−1
N
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and σ(ζp) = ζp, and

σ(

2∏
j=1

g(v, b j )) = σ(

2∏
j=1

∑

x∈F×q

−t (x
1−q
N )b jψ(x))

=
2∏
j=1

∑

x∈F×q

−t (x
1−q
N )−b jψ(x)

=
2∏
j=1

∑

x∈F×q

−t (x
1−q
N )b jψ(x)

=
2∏
j=1

g(v, b j ) (3.3)

because {b1, b2} = {−b1,−b2}.
Therefore, we deduce that det V [λ](GF ) lands in (F×

l2
k(λ)×)n .

��

We now use the comparison theorems to deduce some p-adic Hodge the-
oretic properties of some Vλ,t . Before doing that, let us fix some notation,
following [4].

Let HdR denote the degree N − 2 relative de Rham cohomology of Y :

HdR = HN−2
dR (Y/(T0 × Q(ζN ))).

It is a locally free sheaf over T0 × Q(ζN ) with a decreasing filtration F jHdR
by local direct summands. For σ ∈ Gal(Q(ζN )/Q) , let HdR,σ , F jHdR,σ be
the “twist” of HdR, F jHdR respectively:

HdR,σ = HdR ⊗σ−1,Q(ζN ) Q(ζN ) , F jHdR,σ = F jHdR ⊗σ−1,Q(ζN ) Q(ζN )

H0 acts on HdR, F jHdR in the usual way. Let VdR,σ , F jVdR,σ denote the
χ eigenspace of HdR,σ , F jHdR,σ :

VdR,σ = (HdR,σ )χ,H0, F jVdR,σ = (F jHdR,σ )χ,H0

where we view HdR,σ , F jHdR,σ as Q(ζN ) vector space by acting on the right.
Let gr j VdR,σ = F jVdR,σ /F j+1VdR,σ be the associated graded pieces.
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Again H acts on HdR,σ,0, F jHdR,σ,0, and we have:

VdR,σ,0 =
N⊕
i=1

VdR,σ,i , F jVdR,σ,0 =
N⊕
i=1

F jVdR,σ,i

here VdR,σ,i , F jVdR,σ,i are the subspace of VdR,σ,0, F jVdR,σ,0 resp. where H
acts by:

ξ →
N∏
j=1

ξ
a j+i
j .

and we let gr j VdR,σ,i = F jVdR,σ,i/F j+1VdR,σ,i be the associated graded
pieces. Let λ be a prime of Z[ζN ] of characteristic l and v be a place of F
over l. Here λ is the prime of the coefficients field as before and v is the
place we will restrict to in the p-adic Hodge theory setting. We further let
w be the place of Z[ζN ] below v. Now if t ∈ T0(Fv), for an embedding
σ : Fv ↪→ Q(ζN )λ, by the etale comparison theorem, we have

((HN−2
et (Yt × Fv, Z[ζN ]λ) ⊗Z[ζN ]λ Q(ζN )λ) ⊗σ,Fv BdR)Gal(Fv/Fv)

∼= HN−2
dR (Yt/Fv) ⊗Fv,σ Q(ζN )λ

as filtered vector space. Taking the χ eigenspace of H0 action on both sides
gives (notice the twist):

((Vλ,t ⊗Z[ζN ]λ Q(ζN )λ) ⊗σ,Fv BdR)Gal(Fv/Fv) ∼= VdR,σ|Q(ζN ),t ⊗Fv,σ Q(ζN )λ

as filtered vector space.
Similarly, for i ∈ {1, 2, . . . , N } and σ : Q(ζN )w ↪→ Q(ζN )λ, view 0 ∈

T0(Q(ζN )w), we have:

((Vλ,i ⊗Z[ζN ]λ Q(ζN )λ) ⊗σ,Q(ζN )w BdR)Gal(Q(ζN )w/Q(ζN )w)

∼= VdR,σ|Q(ζN ),i ⊗Q(ζN )w,σ Q(ζN )λ

For a ∈ Z/NZ, we will write a as the representative element in the range
{1, 2, . . . , N } of a. Let τ0 : Q(ζN ) ↪→ C be the embedding : ζN 
→ e2π i/N .
Assume σ−1(ζN ) = ζ aN .
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Lemma 3.10 Under the notation and assumption above, we have

(1) VdR,σ,i �= (0) only when i ∈ {b1, . . . , bn}. And for each such i , VdR,σ,i is
a one-dimensional Q(ζN )- vector space and gr j VdR,σ,i �= 0 only when

j = M(a) + #{b ∈ {b1, . . . , bn} : ab < ai}

here M(a) is some constant determined by a.
(2) gr j VdR,σ is locally free of rank 1 over T0 × Q(ζN ) when M(a) ≤ j ≤

M(a) + n − 1 and is (0) otherwise. VdR,σ is a locally free sheaf over
T0 × Q(ζN ) of rank n.

Proof Base change to C gives that

gr j VdR,σ,i ⊗Q(ζN ),τ0σ−1 C ∼= H j,N−2− j (Y0(C), C)(a(a1+i),...,a(aN+i))

where we define Y (C) via the embedding τ0 and right hand side of the iso-
morphism is defined as the eigenspace of H j,N−2− j (Y0(C), C) where H acts

by ξ → ∏N
j=1 ξ

a(a j+i)
j . Proposition 7.4 and 7.6 of [7] gives that right hand

side is nonzero if and only if

• indices a(a1 + i), . . . , a(aN + i) are all nonzero mod N
• and

j + 1 = (a(a1 + i) + . . .+ a(aN + i))/N ,

i.e. i ∈ {b1, . . . , bn} and we derive the formula of j for a fixed such i as
below. For 1 ≤ d < N , let

j (d) = (aa1 + d + . . .+ aaN + d)/N − 1.

Note that the nonzero ai only appears once in the sum. Then j (d + 1) =
j (d)+ 1 if d ≡ ab j mod N for some b j (in this case, none of aai + d is N ),
and j (d + 1) = j (d) if otherwise (in this case, exactly one of aai + d is N ).
Use this formula to induct,we see that taking M(a) = j (1) gives the formula
in (1).

Since gr j VdR,σ is locally free, it suffice to look at the fibre over 0. Lining
up abi in increasing order, we see that the j such that gr j VdR,σ,0 �= 0 are
precisely M(a), . . . , M(a) + n − 1. (2) follows immediately. ��
Lemma 3.11 Under the notation and assumption above, and let t ∈ Fv as a
point in T0(Fv), we have
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(1) Vλ,t is a de Rham representation of GF . For σ : Fv ↪→ Q(ζN )λ, if
σ−1(ζN ) = ζ aN , then the Hodge-Tate weight of Vλ,t ⊗Z[ζN ]λ Q(ζN )λ with
respect to σ are

{M(a), M(a) + 1, . . . , M(a) + n − 1}.
(2) If t ∈ OFv and t

N − 1 /∈ mFv , then Vλ,t is crystalline.
(3) If l ≡ 1 mod N and t ∈ mFv , then Vλ,t is ordinary of weight (λτ,i ) with

λτ,i = M(aτ ), ∀i , where aτ satisfy τ−1(ζN ) = ζ
aτ

N .

Proof (1) is clear from the comparison theorem and Lemma 3.10.
(2) follows from the fact that these Yt have good reduction modulo the

maximal ideal of F .
(3) we observe that since t ∈ mF ,

(Vλ,0 ⊗τ,F Bcris)
Gal(F/F) ∼= (Vλ,t ⊗τ,F Bcris)

Gal(F/F)

as φ-module because they can both be written as the χ -eigenspace of the crys-
talline cohomology of the reduction of Y0. Moreover, the Hodge-Tate weights
of Vλ,0 and Vλ,t are the same by (1). Thus by Lemma 2.4, Vλ,t is ordinary of
weight (M(aτ )) if and only if Vλ,0 is ordinary of weight (M(aτ )) .

Recall Vλ,0 = ⊕N
i=1Vλ,i as GQ(ζN )w = GQl representation. They are both

Q(ζN )λ = Ql vector space. Since

((Vλ,i ⊗Z[ζN ]λ Q(ζN )λ) ⊗τ,Q(ζN )w BdR)Gal(Q(ζN )w/Q(ζN )w)

∼= VdR,τ|Q(ζN ),i ⊗Q(ζN )w,τ Q(ζN )λ

Vλ,i is 1-dimensional when i ∈ {b1, . . . , bn} and has Hodge-Tate weight
M(aτ ) + #{b ∈ {b1, . . . , bn} : aτb < aτ i} in this case. Thus

Vλ,0 ⊗Ql Ql
∼=

n−1⊕
i=0

Ql(−M(aτ ) − i)

as IQ(ζN )w = IQl -representation. Therefore (3) follows. ��
Lemma 3.12 Under the notation and assumption above, and let λ′ be a place
of Q(ζN ) above l ′, where l ′ �= l is an odd prime not dividing N. Then
view Vλ′,t as a GFv representation, consider the Weil-Deligne representa-
tion WD(Vλ′,t ) = (r1, N ) associated to it. We have that the operator N is
maximally nilpotent.

Proof The same argument as in part 2 of Lemma 1.15 of [10] gives that IFv

acts on Vλ′,t as exp(tFv N ), where tFv is the projection onto the Zl ′-factor in
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the tame inertia group of Fv and N is a maximally nilpotent operator because
the monodromy around ∞ of the local system VB,t is maximally unipotent.
Now the claim follows from the definition of the Weil-Deligne representation
associated to a Galois representation. ��
Remark 3.13 We remark that the proof of the main theorem of [14] shows that
when v(t) < 0, Vλ,t (as a GFv representation) is semistable whose associated
Weil-Deligne representation also has a maximally nilpotent operator N . This
should come as no surprise because of the famous conjecture that geomet-
ric families of Galois representations are strongly compatible and the above
lemma. However, this conjecture being largely unknown, we cannot deduce
one from the other between the two maximally nilpotence of the operators N
mentioned above. The full strength of the main result of [14] is not needed
in this paper, but we include this remark here because we feel it could be of
separate interest.

4 Proof of main results theorem 1.1 and theorem 1.4

We fix a non-CM elliptic curve E/Q. For any prime l ′, let r E,l ′ be the GQ

representation H1
et (E, Fl ′). Write n = lam, l � m

We could find (by Lemma 2.3) a positive integer N satisfying the following
properties related only to r , Fav and n as given in Theorem 1.1.

• N is odd, and is not divisible by any prime factors of ln, any prime that
is ramified in Fav and Fker r and any prime where the elliptic curve E has
bad reduction.

• N > 100n + 100
• Fl2F

′ ⊂ Fl(ζN ) , where F′ is the finite field generated by all the m-th
roots(hence n-th roots) of elements in the field Fls we choose such that
the residual representation r : GF → GLn(Fls ). And when n = 2, we
further want that Fl(ζN ) = Flr for some r even and Fl2F

′ ⊂ Fl(ζN )+.
These all amounts to the condition that the smallest positive integer r such
that N | lr − 1 is divisible by certain integers.

• Let Fl(ζN ) = Flr . When r is even, we have N � lr/2 + 1.

Set Favoid to be the normal closure over Q of FavF
ker r

(ζl). Thus by the
condition above, Q(ζN ) and Favoid are linearly disjoint over Q, since any
rational prime p that is ramified in their intersection has to divide N while
also ramified to Favoid. Such prime does not exist, so their intersection is
unramified over Q and thus must be Q. Hence Favoid and F(ζN ) are linearly
disjoint over F . Following the proof of Corollary 7.2.4 of [1], we can prove
the following statement:
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Proposition 4.1 In the above notation, there exists a rational prime l ′ such
that:

• l ′ ≡ 1 mod N.
• l ′ > 2ln + 5 and is unramified in F.
• r E,l ′(GF̃ ) = GL2(Fl ′), here F̃ is the normal closure of F over Q.
• ∃σ ∈ GF − GF(ζl′ ) such that r E,l ′(σ ) is a scalar.
• E has good ordinary reduction at l ′.
And there exists a finite Galois extension Favoid

2 /Q and a finite totally real
Galois extension Fsuff/Q unramified above the prime divisors of N such that:

• Favoid
2 ∩ Favoid = Q,

• Fsuff ∩ FavoidFavoid
2 = Q,

• Q
ker r E,l′ ⊂ Favoid

2 ,
• Favoid and Favoid

2 are unramified above prime divisors of N .

and for any finite totally real extension F ′/Fsuff such that F ′ ∩Favoid
2 = Q,

Symmn−1rE,l ′ |GF ′ is automorphic .

Proof We first pick an l ′ satisfying the listed properties. This can be done
because the first condition give a set of primes of positive density. The second,
third and fifth condition exclude a set of primes of density 0(the third by [16]
and the fifth by [15] Theorem 20), while the fourth condition follows from
the second and the third.(Just pick a u ∈ F×

l ′ with u2 �= 1 and σ ∈ GF̃ such
that r E,l ′(σ ) = u.)

Carry out the proof of Corollary 7.2.4 of [1] to Favoid = Favoid, E =
E,M = {n − 1},L = {the prime divisors of N} and take the l in the proof
to be the rational prime l ′ we just picked. Note that the properties of l ′ listed
in our proposition implies all the properties of l needed in the first paragraph
of proof of Corollary 7.2.4 of [1].

Inspecting the proof closely would give that the additional properties (the
third and fourth of the lower bullet list) also hold:

The third property follows from the choice of Favoid
2 = Favoid

1 L3 in the 4th

line of page 208 and L3 = L2Q
ker r E,l′ in the second from last paragraph of

page 206 of [1].
For the fourth property, Favoid unramified over L follows from the choice

of N and Favoid
2 unramified above L follows from

1. L3 unramified above L since Q
ker r E,l′ is unramified above L and that each

Q
ker Ind

GL
GQ

ψm is unramified over L (ψm is unramified over L, see the prop-
erties of ψm in the beginning of Page 182 and L is also unramified above
L, see the paragraph before the last paragraph in Page 181) gives that their
composite L2 (page 182) is unramified over L.
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2. Favoid
1 is obtained from applying Proposition 7.2.3 of [1] to F = F0 =

Q (the F is that in the proposition, not our F), {rm, m ∈ M}, L and
FavoidL3 (See the second paragraph of Page 183). In terms of the proof of

Proposition 7.2.3 of [1], Favoid
1 = Q

ker
∏

i r
′
i (ζl ′) with r ′i unramified above

L and l ′ /∈ L (See the last line of Page 180). ��
Note that the condition on N , l, l ′ guarantees the hypothesis of N , l in

Sect. 3 are all satisfied, and l ′ satisfy the same hypothesis as l with respect
to the same N . In particular, the conditions of Proposition 3.8 are satisfied.

Now, apply Lemma 2.1 to F = F, M = F(ζN ), F0 = FavoidFavoid
2 F suff(ζN ),

to see we may take a finite CM Galois extension E/F with E = LM for some
totally real Galois extension L/Q such that L and F0 are linearly disjoint over
Q, and that we may find some characters χ1 : Gal(F/E) → (Z[ζN ]/λ)× and
χ2 : Gal(F/E) → (Z[ζN ]/λ′)× such that (χ1 × χ2)

n ∼= (det V [λλ′]) ⊗
det(r × Symmn−1rE,l ′)∨ as GE -module. The condition of Lemma 2.1 is ver-
ified below.

On the side of characteristic l, fix a prime λ of Q(ζN ) (Q(ζN )+ when
n = 2) and denote the residue field by k(λ). Note that the condition of N
in the beginning of this section gives that det r actually has image landing in
(k(λ)×)n . We also assumed that Fl2 ⊂ k(λ), n | #(k(λ)×). Hence, applying
Lemma 3.9 to the field F(ζN ), we see that on the characteristic l side, we
have det V [λ] ⊗ (det r)∨ (as a GF(ζN ) representation) has image in (k(λ)×)n .

On the other side of characteristic l ′, fixing a prime λ′ of Z[ζN ] (Z[ζN ]+
when n = 2) over l ′, we have that det Symmn−1r E,l ′ = (χcyc)

n(n−1)/2,
which have image in F×

l2
. Applying Lemma 3.9 to the prime l ′ to see that

(det Symmn−1r E,l ′)∨⊗ (det V [λ′]) (as a GF(ζN ) representation) has image in
(k(λ′)×)n .

Let W be the Z[ζN ]/λλ′-module with a GE action given by the represen-
tation (χ1 ⊗ r) × (χ2 ⊗ Symmn−1r E,l ′). The isomorphism (χ1 × χ2)

n ∼=
(det V [λλ′]) ⊗ det(r × Symmn−1rE,l ′)∨ induces an isomorphism

φ :
n∧

W(T0)E →
n∧

V [λλ′]

. In this way, the moduli functor TW is well-defined by φ over E .

We see that the conditions of Proposition 3.8 are satisfied for N and l, l ′.
Thus TW is geometrically connected.

Note that FavoidFavoid
2 F suff and M = F(ζN ) are linearly disjoint over F

because FavoidFavoid
2 F suff and Q(ζN ) linearly disjoint over Q, which in turn

comes from Favoid, Favoid
2 , F suff all unramified over the prime divisors of N .

Since L is linearly disjoint with F0 over Q and M ⊂ F0, we have that
E = LM and F0 are linearly disjoint over M . Now E and FavoidFavoid

2 F suff
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are linearly disjoint over F , because E ∩ FavoidFavoid
2 F suff = LM ∩ F0 ∩

FavoidFavoid
2 F suff = M ∩ FavoidFavoid

2 F suff = F
We will need a theorem of Moret-Bailly from [10].

Proposition 4.2 Let F be a number field and let S = S1 � S2 � S3 be a finite
set of places of F, so that every element of S2 is non-archimedean. Suppose
that T/F is a smooth, geometrically connected variety. Suppose also that

• for v ∈ S1 , �v ⊂ T (Fv) is a non-empty open subset ( for the v- topology)
• for v ∈ S2 , �v ⊂ T (Fnr

v ) is a non-empty open Gal(Fnr
v /Fv)- invariant

subset .
• for v ∈ S3, �v ⊂ T (Fv) is a non-empty open Gal(Fv/Fv)- invariant
subset .

Suppose finally that H/F is a finite Galois extension. Then there is a finite
Galois extension F ′/F and a point P ∈ T (F ′) such that:

• F ′/F is linearly disjoint from H/F
• every place v of S1 splits completely in F ′ and if w is a prime of F ′ above

v, then P ∈ �v ⊂ T (F ′
w)

• every place v of S2 is unramified in F ′ and if w is a prime of F ′ above
v,then P ∈ �v ∩ T (F ′

w)

• if w is a prime of F ′ above some v ∈ S3, then P ∈ �v ∩ T (F ′
w).

Let F+ ⊂ F, E+ ⊂ E be the maximal totally real subfield respectively.
We apply Proposition 4.2 to the smooth geometrically connected variety T =
ResEFsuff

Q
TW defined over Q. We take H = F0L = F0E .

We take S1 = {∞}, S2 = ∅ and S3 = {l, l ′}. For v ∈ S1, we take �v =
ResEFsuff

Q
TW (R), i.e. the whole set which is clearly open and non-empty since

each copy of TW (C) are non-empty. For v ∈ S3, there exists an algebraic
morphism p : T → ResEFsuff

Q
T0 and we define

�l,0 = {t = (tτ ) ∈ ResEFsuff

Q T0(Ql)

=
∏

τ :EFsuff↪→Ql

T0,τ (Ql) | vl(tτ ) < 0,∀τ },

�l ′,0 = {t = (tτ ) ∈ ResEFsuff

Q T0(Ql ′)

=
∏

τ :EFsuff↪→Ql′

T0,τ (Ql ′) | vl ′(tτ ) > 0,∀τ }

and we define �l = p−1(�l,0), �l ′ = p−1(�l ′,0). Both sets are clearly open,
non-empty and Galois invariant.
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Hence, we get a finite totally real Galois extension L ′/Q with L ′ linearly
disjoint with F0L over Q and a point t ∈ T0(L ′EF suff) (because L ′ and
EF suff are linearly disjoint over Q) such that if we denote L ′EF suff by F ′
and L ′E+F suff by (F ′)+ then

• F ′ ⊃ EF suff is a CM Galois extension over F ,
• χ1

−1V [λ]t ∼= r |GF ′ ,

• χ2
−1V [λ′]t ∼= Symmn−1rE,l ′ |GF ′ ,• v(t) < 0 for all primes v|l of F ′,

• v(t) > 0 for all primes v|l ′ of F ′.
Now F ′ ∩ Favoid

2 = L ′EF suff∩ F0L ∩ Favoid
2 = EF suff∩ Favoid

2 because L ′
and F0L are linearly disjoint over Q. Moreover, EF suff∩Favoid

2 = LMF suff∩
F0 ∩ Favoid

2 = MF suff ∩ Favoid
2 because L and F0 are linearly disjoint over Q.

Furthermore, MF suff ∩ Favoid
2 = F suffF(ζN ) ∩ F suffFavoidFavoid

2 ∩ Favoid
2 =

F suffF ∩ Favoid
2 because FavoidFavoid

2 F suff and Q(ζN ) linearly disjoint over
Q. Finally, F suffF ∩ Favoid

2 = F suffF ∩ FavoidFavoid
2 ∩ Favoid

2 = F ∩ Favoid
2 ⊂

Favoid ∩ Favoid
2 = Q because F suff and FavoidFavoid

2 are linearly disjoint over
Q. Therefore, we conclude that F ′ ⊃ F suff and is linearly disjoint with Favoid

2
over Q, so we see by Proposition 4.1 that Symmn−1rE,l ′ |G(F ′)+ and hence

Symmn−1rE,l ′ |GF ′ is automorphic. Since F ′ and Q
ker r E,l′ (⊂ Favoid

2 ) are lin-
early disjoint over Q, we again have

• r E,l ′(GF ′) ⊃ SL2(Fl ′).
• ∃σ ∈ GF ′ − GF ′(ζl′ ) such that r E,l ′(σ ) is a scalar.

Note that by similar reasoning as the previous paragraph, we have that
F ′∩FavoidFavoid

2 = L ′EF suff∩F0L∩FavoidFavoid
2 = EF suff∩FavoidFavoid

2 =
LMF suff ∩ F0 ∩ FavoidFavoid

2 = MF suff ∩ FavoidFavoid
2 = F suffF(ζN ) ∩

F suffFavoidFavoid
2 ∩ FavoidFavoid

2 = F suffF ∩ FavoidFavoid
2 = F and thus F ′ is

linearly disjoint with Fav over F as we wanted in the main theorem.
Let χ2 : GE → Q(ζN )× be the Teichmuller lift of χ2. We would

like to apply Theorem 6.1.2 of [1] to p = l ′, ρ = Vλ′,t ⊗ χ−1
2 and

rι(π) = Symmn−1rE,l ′ |GF ′ . Clearly ρ ∼= rι(π). For the residual repre-
sentation Symmn−1r E,l ′ |GF ′ , the two properties of r E,l ′ listed in 4.1 gives
that it is absolutely irreducible and condition (4) of Theorem 6.1.2 of [1]
is satisfied. Now apply Lemma 2.6 (1) to F = F , F1 = F ′, l = l ′,
r = r E,l ′ and the fact that F ′ and Q

ker r E,l′ are linearly disjoint over Q,
to see (Symmn−1r E,l ′)(GF ′(ζl′ )) = (Symmn−1r E,l ′)(GF(ζl′ )) is enormous.

Apply Lemma 2.6 (2) to the same situation (H ⊂ F̃Q
ker r E,l′ ⊂ F̃ Favoid

2 ⊂
FavoidFavoid

2 , thus H ′ ⊂ FavoidFavoid
2 since Favoid and Favoid

2 are both Galois
over Q, and then F ′ linearly disjoint with FavoidFavoid

2 over F is satisfied) to
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see that ρ is decomposed generic. Now Vλ′,t is a regular ordinary represen-
tation for any place vl ′ | l ′ of F ′ by Lemma 3.11 (3) (vl ′(t) > 0) and thus
so is ρ. Our choice of l ′ gives that Symmn−1rE,l ′ |GF ′ is ordinary as a GF ′

v′
representation for any l ′-adic place v′ of F ′. Hence we may apply Lemma
5.9 of [8] to see that Symmn−1rE,l ′ |GF ′ is ι′-ordinarily automorphic (since
Symmn−1rE,l ′ |GF ′ is clearly polarizable). Theorem 6.1.2 of [1] thus gives
that Vλ′,t is automorphic as a GF ′ representation.

Hence Vλ,t is automorphic as a GF ′ representation. Now by the following
Lemma 4.3 (vl(t) < 0 for any vl | l), we see that Vλ,t ⊗ χ−1

1 is ι-ordinarily
automorphic and hence r |GF ′ is ordinarily automorphic. This finishes the
proof of Theorem 1.1.

Lemma 4.3 We assume t ∈ F ′ satisfy v(t) < 0 for any l-adic places v of F ′
and Vλ,t is automorphic, then Vλ,t is ι-ordinarily automorphic.

Proof Write Vλ,t = rl,ι(π), then the only thing we need to show is that
πv is ι-ordinary for any l-adic places v of F ′. Lemma 3.12 shows that
WD(Vλ′,t |GF ′v

) ∼= WD(rl ′,ι′(π)|GF ′v
) has a maximally nilpotent N and hence

is Steinberg. Now the main theorem of [17] shows that

WD(rl ′,ι′(π)|GF ′v
)Frob−ss ≺ ι−1recF ′

v
(πv| det |

1−n
2

v ).

. But (n, 0, 0, . . .) is the largest among the order ≺, thus recF ′
v
(πv| det |

1−n
2

v )

has a maximally nilpotent N and hence πv is Steinberg.
Now we apply a variant of Lemma 5.6 of [8] to conclude πv is ι-ordinary

from the fact that πv is Steinberg. Namely, we show that the weight 0 condi-

tion is not needed. In the notation of Geraghty, we write πv
∼= Spn(ψv| · | 1−n

2 ).
By Lemma 3.11, we have that the Hodge-Tate weight of Vλ,t has the shape
(λτ , λτ +1, . . . , λτ +n−1)τ , we see that the weight of the automorphic rep-
resentation π must be of form (−λτ )τ , here in terms of Geraghty’s notation
it means that all λτ,i = −λτ for a fixed τ . Because of this property and in
view of Lemma 5.2 of [8], it suffices to show that vall(ι−1(ψv(det(α(n)

�v )))) =
vall(

∏
τ :F ′

v↪→Ql
τ(�v)

−nλτ ) (for the other j ∈ [0, n], it suffices to divide this
equality by n and multiply by j). Let φπ be the central character of π , then
the left hand side of the above is just vall(ι−1(φπ,v(�v))). Now we know

that rl,ι(φπ) = det rl,ι(π) · χ
n(n−1)

2
cyc , here the rl,ι on the left hand side is the

1-dimensional Langlands sending algebraic characters to l-aidc characters.
Thus rl,ι(φπ) is an l-adic character of Hodge-Tate weight (nλτ )τ , and since
the image of rl,ι(φπ) are all l-adic units, we see that vall(ι−1(φπ,v(�v))) =
vall(

∏
τ :F ′

v↪→Ql
τ(�v)

−nλτ ) and we are done.
��
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Remark 4.4 Here is a follow-up on Remark 3.13. In the process of proof
above, we actually proved that Vλ,t

∼= rl,ι(π) is ι-ordinarily automorphic.
Hence by the main local-global compatibility result Theorem 5.5.1 or [1], we
see that Vλ,t as a GF ′

v
representation is ordinary for any l-adic places v of F .

This gives another way of proving the main result of [14]. However, as we
have commented, the attempt of deducing Vλ,t being ι-ordinarily automor-
phic from the fact that it is automorphic and ordinary as l ′-adic representation
seems invalid because to the best of the author’s knowledge, the local-global
compatibility result in this direction assumes the Galois representation to be
polarizable.

The author wants to thank Jack Thorne for pointing out this issue (together
with Remark 3.13) to him.

For the proof of Theorem 1.4, we know from above that χ1
−1V [λ]t ∼=

r |GF ′ and Vλ,t⊗χ−1
1 is ι-ordinarily automorphic. Thus, in order to apply The-

orem 6.1.2 of [1], it suffices to verify that the conditions (3) and (4) of that

theorem holds for r |GF ′ . Since F ′ is linearly disjoint with F
ker r ⊂ Favoid over

F , all conditions except decomposed genericity follows from the correspond-
ing conditions of r . Now F ′ = L ′EF suff = FL ′LF suff(ζN ) is Galois over F .

And the Galois closure of F
ker r

(ζl) is linearly disjoint with F ′ over Q because
this Galois closure is contained in Favoid and that L ′LF suff(ζN ) ∩ Favoid =
L ′LF suff(ζN ) ∩ LF0 ∩ Favoid = LF suff(ζN ) ∩ Favoid = LF suff(ζN ) ∩ F0 ∩
Favoid = F suff(ζN ) ∩ Favoid = F suff(ζN ) ∩ F suffFavoidFavoid

2 ∩ Favoid =
F suff∩ Favoid = Q. Now we may apply Lemma 7.1.7 of [1] to see the decom-
posed genericity. Hence we also finish the proof of Theorem 1.4.
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