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Abstract We prove potential automorphy results for a single Galois repre-
sentation G — GL,,(@Z) where F is a CM number field. The strategy is
to use the p, g switch trick to go between the p-adic and g-adic realisation
of a certain variant of the Dwork motive. We choose this variant to break
self-duality shape of the motives, but not the Hodge-Tate weights. Another
key result to prove is that certain p-adic representations we choose that come
from the Dwork motives is ordinarily automorphic. One input is the auto-
morphy lifting theorem in Allen et al.: (Potential automorphy over CM fields,
Cornell University, New York 2018) .

1 Introduction

In this paper we prove potential automorphy theorems for n-dimensional /-
adic and residual representations of the absolute Galois group of an imaginary
CM field.

The precise statement of the theorem for residual representations is as fol-
lowing.

Theorem 1.1 Suppose F is a CM number field, F* is a finite extension of F
and n > 2 is a positive integer. Let | be an odd prime number and suppose
that
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7:Gal(F/F) = GL,(F)

is a continuous semisimple representation. Then there exists a finite CM
Galois extension F'/ F linearly disjoint from F*' over F such that ¥ |Gal(f/F/)
is ordinarily automorphic.

We first breifly recall the definitions of the terms appearing in the theorem.

Recall that for £ any CM (or totally real) field, we could attach to any
regular algebraic cuspidal automorphic representation 7 of GL,(Ag) an [-
adic Galois representation of G g satisfying certain local-global compatibility
condition by the main theorem of [9].

More precisely, fix an isomorphism Q; — C. For such a , there is a
unique continuous semisimple representation

r1.,(m) : G — GL,(Q))

such that, if p # [ is a rational prime above which 7 and E are unramified
and if v|p is a prime of E, then r;,(;r) is unramified at v and

KX -1 1—n)/2
Ly, = rec, (uldet]y /%)

here recg, denotes the local Langlands correspondance for E,, and |** denotes
the semisimplification.

Definition 1.2 For a p-adic local field L and a continuous representation
p : G — GL,(Qp,), we say it is ordinary with regular Hodge-Tate
weight if tEere exists a weigEt A= () € ({a,...;a)lar = -+ =
apHHom(L.Qp) —. (Z’}F)Hom(L’QP) such that there is an isomorphism:

Y1 ok ok ok
0 ¥y *
e~ . . . ;
o T %
0 --- 0 ¥y,
where for eachi = 1, ..., n the character ¥; : Gy — @; agrees with the

character

celp— [] rAr (o) Gerimtizh
reHom(L,@p)

on an open subgroup of the inertia group Iy..
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Definition 1.3 For a Galois representation r : Gg — GLn(@l) , We say it
is automorphic if there exists a regular algebraic cuspidal automorphic rep-
resentation 7 such that » = r;,(w) . And for a residual representation 7 :
Gg — GL, (Fl) , we say it is automorphic if there exists a lift » of 7 that is
automorphic. We say it is ¢-ordinarily automorphic if there exists an automor-
phic lift ¥ = r;, (;r) such that the automorphic representation 7 it corresponds
to is t-ordinary (in the sense of [8] Definition 5.3) at all places v above /.

We also remark here that restricting to some G s for a Galois extension
F’/F that avoids a prescribed finite extension F?¥ of F can ensure that the
image 7 (G gr) does not shrink.

Combine our main theorem for residual representation Theorem 1.1 with
the automorphy lifting theorem 6.1.2 from [1] and the main result of [14], we
obtain a potential automorphy theorem for a single /-adic Galois representa-
tion into GL,,.

Theorem 1.4 Suppose F is a CM number field, F¥ is a finite extension of
F and n > 2 is a positive integer. Let | be an odd prime number. Fix an
isomorphism t : Q; — C and suppose that

r:Gp— GL,(Q)

is a continuous representation satisfying the following condition:

e 1 is unramified almost everywhere.

e For each place v|l of F, the representation r |G, is potentially semistable,
ordinary with regular Hodge-Tate weights.

e 7 is absolutely irreducible and decomposed generic (See [1] Definition
4.3.1). The image 0f7|Gp@1) is enormous (See [1] Definition 6.2.28).

o There exists 0 € G — GF() such thatr(o) is a scalar.

Then there exists a finite CM Galois extension F'/F linearly disjoint from
F* over F such that r |, is ordinarily automorphic.

Previously there are potential automorphy results for 7 and r that take value
in GSpa, ( [10]) or more generally, the subgroup of GL, that preserves a
nondegenerate form up to a scalar ( [4]). The strategy of proving the main
theorems in this paper is based on the strategy of proving theorems in these
paper. But there are also many crucial differences.

The main idea of the proof of Theorem 1.1 is as the following. The prime
[ is given. But we will choose some positive integer N and another prime [’
with good properties. Note that this choice make certain arguments for the
I’-related objects easier than their [-related counterpart.
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Consider the Dwork family ¥ ¢ PN~ x (P!\ (uy U {00})) defined by the
following equation:

XN+ xV+ +xV =NeXi Xy Xy

for the good N we will choose. The variety comes equipped with an action of
the group

Ho:={(1,....6n) e u 1 &1 &y = 1}/un.

(see Sect. 3). After picking a character x of Hp, we may consider the
motives such that their /(or I')-adic realisation is the yx-eigenspace of the
(N — 2)-th(middle degree) etale cohomology of any fibre of this family with
coefficients @l (or @1/). We will denote such I(or I")-adic cohomology of the
fibre over the point ¢ as V;_;(or Vi), where A, 1 is a place of Q(¢y) above
[,1I'. Note that here we will choose a yx that is of a shape artificially made
to break the self-duality of the motive. However, the self-duality shape of the
Hodge-Tate weights will be preserved. In fact, they are a string of consecutive
integers. We will try to find a point ¢ on the base defined over an extension
field F’, such that the mod-/ residual Galois representation V[A]; given by the
fibre of the motive over ¢ is isomorphic to the 7 in the theorem, while the mod-
!’ residual Galois representation V[1']; given by the fibre of the motive over
t is isomorphic to 7y /(1) for some known ordinarily automorphic represen-
tation ry (1), both as representation of G g . If such a point exists, then we
could apply ordinary automorphy lifting theorem 6.1.2 of [1] to see Vy/; is
automorphic, and conclude that V) _; is automorphic. Hence 7 is automorphic.

The above is a very rough summary of what we did in this paper. Let us be
more precise now.

The first problem that is worth more explanantion is the existence of such
a point ¢. Assume 7 and 7y ,(7) can be defined as representation over k(1)
and k(1"), where these are the residue fields for the places A and A of Z[¢y].
The existence of such a point ¢ is guaranteed by a careful study of the moduli
scheme that detects the isomorphisms between 7 x 7 ,(;r) and the varying
V[A]s x V[A']; as representation over k(L) x k(1"), such that the top wedge of
the isomorphism is fixed to be an a priori choice. Now the main property we
use to prove the existence of such a point ¢ is the geometric connectivity of
the moduli variety. And the geomoretic connectivity is in turn deduced from
the result that the geometric monodromy map of this family surjects onto
SL,(k(L)) x SL,(k().")), over which the fiber over ¢ of the moduli scheme
is a torsor. The proof of this surjectivity result involves combinatorial argu-
ments that precisely make use of the shape of the charater x we choose. In
contrast, we know that if we had chosen the x to be of some nice self-dual
form, then the image of the geometric monodromy map would be contained
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in some symplectic group Sp,(k(1)) x Sp,(k(1')). We remark that in pre-
vious work, other authors have considered the moduli variety parametrizing
similar isomorphisms but with the condition that certain alternating forms on
both representation spaces need to be preserved, where the alternating form
on the varying cohomology is induced by Poincare duality and the self-dual
shape of the x they chose.

In the above procedure, after showing that the geometric monodromy has
image in SL,(k(L)) x SL,(k()")) (using the shape of x), we see that the
spaces A"(V[A]; x V[A];) as characters of G r does not depend on the base
point ¢. Thus to construct the moduli scheme, it suffices to construct a fixed
isomorphism between A" (7 x 7 (7)) and A" (V[A]; x V[1'];) for any chosen
t an F point of the base. However, this isomorphism does not a priori exist. We
get around this problem by restricting to a smaller G ¢- and twisting 7 <7y ,(77)
by a character | x X5 : G — k(A)* x k(X/)*, so that we would like
to construct the moduli scheme as the one detecting isomorphisms between
(7 X 71/J(7'[)) ® (71 X 72) and V[A]; x V[1'];. Note that we need x| X X»
to take value in exactly k(A)* x k(A')* because we want the fiber of the
moduli scheme to be a torsor under the image SL, k(1)) x SL,(k(1)) of
the geometric monodromy map because this is crucial to show the geometric
connectivity of the moduli scheme.

Now choosing ¢ = 0, to construct an isomorphism between det ( (F X1y,
() ® (71 X 72)) and det (V[A], X V[)J],), amounts to taking an “n-th
root” of the character (det V[A]y x V[A]o)~! @ det(F x 7y, (m)) as char-
acter valued in k(L)X x k(A)*, where V[A]y, V[A']o denotes the mod I, [’
cohomology of the fibre over 0. The first step to make this adjustment work
is that we need

o (det V[Alo x V[M10)~! @ det(F x 7y ,(m)) has image in (k(1)*)" x
(k(\/)™)" as a G g representation.

We remark that this condition is proved by a computation for the fibre over
0, where there is a good description. The computation is done in 3.9. Then,
we will use Lemma 2.1 to deduce that this condition above enables us to
construct such an “n-th root” of character while also making sure that F’
satisfies certain linearly disjoint properties.

The second problem is that to apply ordinary automorphy lifting theorems,
we also need to show Vy, ; is ordinary (as G F, representation where v’ is any

I’-adic places of F’) and V. ; (asa G F; Tepresentation where v is any /-adic
place of F’) is ordinarily automorphic.

The proof of V), ; being ordinary is relatively easy. We just pick € AL(F"
that is /’-adicly close to 0. Applying 2.4, we may check ordinarity via an
examination of Dcs(Vy ;) . The comparison theorem identifies Deris(Vi: /)
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and Dcis(Vy,0), and hence reduces the proof to the case r = 0. In that case,
V0 actually splits into characters as a G g representation.

To prove that V) ; is ¢-ordinarily automorphic (with the assumption that
Vy.¢ is (-automorphic and Vj/ ; = ry ¢(i)) is harder and relies on a maximal
unipotence result of the monodromy of V), ;, as well as Varma’s local-global
compatibility result as in [17]. The idea is to choose ¢t € AI(F ") that has [-
adic valuation < 0. Then an argument similar to that of Lemma 1.15 part 2 of
[10] shows that the nilpotent operator N in the Weil-Deligne representation
associated to Vy/ ; (asa G F representation, where v is an [/-adic place of F’)
is maximally nilpotent. Then the result of [17] shows that =, is Steinberg.
Hence m, being t-ordinary follows from a variant of Lemma 5.6 of [8].

The difference between the case of [ and I” arises partially from the fact
that [ is given but we may choose [’ arbitrarily.

Lastly the w1 we use such that ry /(7r1) is ordinarily automorphic and lift
V[A']; is such that ry /(71) is a symmetric tensor power of the Tate module
of an elliptic curve over QQ.

With the above input and an awkward choice of the character x of Hp, plus
several technical algebraic number theory lemmas listed in Sect. 2, we will
finally prove the main theorems in Sect. 4.

2 Several lemmas

In this section we prove several technical lemmas and fix some notation that
will appear later in the paper. Throughout this section, / is an odd prime.

Let us first state the properties we will use throughout the paper regarding
the notion of linearly disjoint fields.

e If A and B are extensions of C then A, B linearly disjoint over C implies
A N B = C, and the converse is true if A or B is finite Galois over C.

e If AD B D Cand D D C with A and D linearly disjoint over C, then A
and B D are linearly disjoint over B. In particular AN BD = B.

Lemma 2.1 For a CM field M, a finite Galois extension Fy/Q , a finite field
[y containing all n-th roots of unity, and a character x : Gy — (IFIX,)”,
there exists a finite totally real Galois extension L/Q linearly disjoint with

Fo over Q and such that if we denote F\ = LM , there exists a character
Y : Gr — Ty such that Y = x|y, -

Proof Consider the long exact sequence associated to the following short
exact sequence of G jr-module with trivial action:

(-

0 — Z/mZ — Fy -2 @" —— 0,
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where we write n = [“m, [ { m, we have:

H' (G F) —L B Gy B — s H2(Gy. Z/m).

Now x € H (G y, (le,)m) Afwelet x = §(x) , we are reduced to finding
a Galois CM extension F; D M of the form F; = LM for some L linearly
disjoint with Fjy over Q such that the obstruction x is killed by the restriction
map H*(Gy, Z/mZ) — H*(GF,, Z/mZ).

Consider the map H*(Gy, Z/mZ) — IL H*(Gy,, Z/mZ) given by
restriction. The image actually lands in @, H 2(G M, Z/mZ) because any
element in H2(G y, Z/mZ) is inflated from some ¢ € Hz(Gal(M’/M),
Z/mZ) for some M'/M a finite extension and for those primes v of M that
is unramified in M’, the image of ¢ in H*(G M, 2/ mZ) by restriction actu-
ally lands in H>(Gal(M™/M,), Z./mZ) , which is 0 since the cohomological
dimension of Z is 1.

The first step is to take an CM extension F>/M that is of the form L, M for
a totally real L, Galois over QQ that is linearly disjoint with Fy over Q, such
that in the following commutative diagram, the image of ) in the upper right
corner is 0:

H*(Gp,, Z/mZ) — @, H*(GF,, . Z/mZ)

I I

H*(Gum, Z/mZ) —— @, H*(Gu,, Z/mZ)

Let € X, be the image of ¥ in P, H*(Gy,, Z/mZ) . If we can take a
CM extension F,/M of the above form such that for any v with x, # 0
and w|v a place of I, & € Fa,y and m|[F2,y, @ My(&m)], then the image
of X, restricting to H*(Gp,,,Z/mZ) is 0, since H*(Gu,z,.), Z/mZ) =
HZ(GMU(;,,,), Um) = %Z/Z, and the restriction map %Z/Z = HZ(GMU@,"),
Um) — HZ(GFM, Um) = %Z/Z is multiplication by [F2 4, : My (&m)]-

We can construct such an extension F>/M coming from L;/Q linearly
disjoint with Fy over Q with prescribed local behavior for a finite number of
primes v of M as the following:

Let S; be the set of rational primes lying under the primes v of M such
that x, # 0. Let S ={oo} and S = S§; U S,. For each g € Sy, let M,
denote the composite of the image of all embeddings t : M — @q. We fix
an extension E, /M, (&) of order divisible by m and Galois over (Q,. Now
we apply Lemma 4.1.2 of [5] to Fy/Q and the set of primes S with prescribed
local behavior:
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o £,/Q, forallg € S
e Trivial extension R/R for co € S,

We get a finite totally real Galois extension L,/QQ that is linearly disjoint
with F over Q and that for any w a place of Ly overa g € Sy, (L2)y = Ej
we defined above over Q. Take F» = M L;. For any prime v of the field
M with x, # 0 and v’ a prime of F, over v, then ¢ = v/, € S, thus
Ky D (Lz)qu2 D E, and so Gal(F3 /My (&) is of order divisible by m.
So we have constructed the desired L, and F;.

Now for any number field F and G r module A, let I/ (F, A) be

ker(H'(Gr. A) — [ [ H'(GF,. A)

where the product is over all places v of F (so is every product that follows).

Thus the first step yields a finite CM Galois extension F,/M that comes
from some L;/Q as described above such that the image x; of x in
HZ(GFZ, 7Z/m1Z) actually lies in [12(F>, Z/mZ) .

The second step is to analyze 12 (F, Z/mZ) and kill it after some further
CM extension F1/F, where F1 = L1L,M, with L totally real Galois over
Q that would be specified later and such that L := L L, is linearly disjoint
with Fy over Q.

Poitou—Tate duality(cf. [13] Theorem 8.6.7) gives a perfect pairing

(-, ) I (Fy, Z/mZ) x T (Fa, ) — Q/Z

satisfying the following compatibility for any finite extension Fi/F> and x €
I (Fy, pm), y € U (F, Z/mZ) :

(x, Res(y)) = (Cor(x), y)

So we now choose such an extension Fi/F, such that Cor(x) = 0, Vx €

I (Fy, i), then by the perfectness, Res(y) =0, Vy € 1%(F, Z]mZ).
Write m = 27 Hlepl.ri. Decompose I (F, i) = HIN(F, uor) x

T2, 1 (m, i ). The following lemma is basically Theorem 9.1.9 of [12].

Lemma 2.2 For any number field F, III'(F, wpr) = 0 or Z/27. The later
case could happen only when p = 2.
In any case, Il (r, Wpr) = IHI(F(,upr)/F, W pr) (defined in the proof) .
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Proof Set K = F(jup,r) . We have the following commutative diagram where
each row and column (except the left column) are exact:

0 —————— H'Gx.py) —— [, H' G, tpr)

[ I I

0 —— W' (F, ppr) ——— H'(GF,ppr) ——— [1, H'(GE,, 1pr)

I I ]

0 —— M (K/F, ) — H'(Gal(K/F), ppr) — [, H (Gal(Kw/Fy), )

where ITIT' (K /F, wpr) is defined by the exactness of the bottom row and the
top row is exact because an element in the kernel corresponds to a cyclic
extension of K of order dividing p” that splits at all primes w of K, which
has to be trivial. (Again wu, = Z/p"7Z as a G ¢ module and H'is just Hom.)

A diagram chasing gives that ITI!(F, Mpr) = 1K /F, wpr). By Propo-
sition 9.1.6 of [12], Hl(Gal(K/F), wpr) = 0 except when

e p=2r>2
e and —1 is in the image of Gal(K /F) — (Z/2"Z)*

In this case, H'(Gal(K/F), uo») = Z7/27. As a subspace of H'
(Gal(K/F), por), IIYN(F, ppr) = YK /F, ppr) = 0 or Z/27. o

Recall the relation Cor o Res = [F] : F>] and the commutative diagram:

HY (G p,, o) Res s H'(Gp,. o)

I I

HY(Gal(Fy(ur)/ Fa), o) —=5 HY(Gal(Fy (uar)/F1). o)

The bottom row is an isomorphism if we pick Fj linearly disjoint with
F>(uor) over F;. If this is the case and 2 | [F : F2], then by Lemma 2.2

Cor(IIT' (Fy, ptm)) = Cor(IIT' (Fy, par))
= Cor(II1' (Fy (2r)/ F1, o))
C Cor(H' (Gal(Fi(12r)/F1), p2r))
= Cor(Res(H ' (Gal(F(u2)/ F2), 1i2)))

= [F1 : Fp]- HY(Gal(Fa(uuar)/ F2), o)
=0.

2.1)

Here when we apply Cor to some group, we always mean Cor applied to
the image of this group in H'! (GFy, p2r).
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Now we construct an L such that the associated extension F/F; satisfies
the property that F| is linearly disjoint with F>(uor) over Fr and 2 | [Fy : F2].
Choose a rational prime p and a local field E, Galois over QQ,, that contains
M},, the composite of the image of all embeddings 7 : F; — @p, and is
of order divisible by 2 over it. We again apply Lemma 4.1.2 of [5] to the
extension FoF>(upr)/Q and the set of primes S consisting of p and co with
prescribed local behavior:

o £,/Q,
e Trivial extension R /R for the place oco.

We get a totally real Galois extension L;/Q linearly disjoint with
FoF>(uor) over Q. The associated F| = Fob Ly = MLyL,. Then2 | [F) : F>]
because for any place v of Fj above p, (Fi)y D (Ll)v\L1 =E,D (F2)1,|F2
and the last inclusion is of order divisible by 2. The property that F; = F>L;
and F,(uyr) are linearly disjoint over F; follows from the fact that L; and
F>(uupr) are linearly disjoint over Q. Now L and FyF, are linearly dis-
joint over Q implies that L1 L, and FyF, are linearly disjoint over L,. Hence
LiLyNFy=LiLo,NFyFoNFy=L,N Fy =Q.

We conclude that the image of x in H2(GF1 , Z/mZ) is 0 by (2.1) and thus
we can take an n-th root of )(lGF1 for F = LM D Mand L = L{L, we
constructed above finite totally real Galois over Q and linearly disjoint with
Fy over Q.

O

Lemma 2.3 Let | be a rational prime. Given any positive integer s and a
finite set of rational primes S, we can find a positive integer N not divisible
by any primes in S and l, and satisfying :

e Let r be the smallest positive integer such that N | I" — 1, then s | r.

o Whenr is even, NJ(Z’/2 +1

m
Proof Factorize s as s = 2% 1_[ pfi. View pg = 2. We will construct a
i=1
sequence of pairwise coprime integers M; (not divisible by any rational prime
in §) and a sequence of integers #; with t; > a; fori =0, 1, ..., m, such that

m
M; | I" — 1 if and only if pfi | r.Set N = 1—[ M; and consider the order of /
i=0

m
in(Z/NZ)* = H(Z/ M;Z)*, we see that the first condition is satisfied. For
i=1
the second condition (if ap > 0), we need to make My satisfy the following
extra property:

Mot 1% +1.
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Now we work on i = O first. Take 79 > ag large enough such that #yp > 2 and
for each rational prime g € S U {2}, one of the following holds:

1) g sz — 1 forany k > 0,

@) q 127 — 1.

The fact 1 > 2 gives 29 4+ 1 = 2 mod 4 and 12°~' + 1 = 2 mod 4. Thus

we may choose an odd prime divisor A of 1207 + 1 and an odd prime divisor
B of 12°”" + 1. We deduce that

AB |12 —1, B2 — 1, a4 1
Take My = AB. Thus the smallest r such that My | I" — 1 is 20 and M 1
27 41 Also, for g € S, if g | My, then ¢q | 127 4 1or q | 27 41
In either case (1) won’t happen, so g | 12°7 _ 1. Thus g = 2. And this
gives a contradiction with AB being odd. We have constructed an My with

the property stated above.
Now we inductively construct M; and t; > a; such that

e M; is not divisible by any rational primes in S; = {p;} U § U {rational
prime divisors of M for j < i} U {l} U {2}.
e The order of [ in (Z/M;Z)* is pf".

tl'—2
Choose #; > a; large enough, such that [”i > p; and for each rational
prime g € S;, one of the following holds:

(1) g )(lpzk — 1 forany k > 0,
;=2
2 g’ -1

TfgesSandg |17 @D 417 41 theng |17 —1andso (1)
cannot hold. Hence ¢ | lp;i_z — 1. Thus l”?_l(”"_l) + ...+ l”?—1 +1=p;
mod g. We see ¢ = p;. In this case, lpz{iil = (lpz{id)pi =04+ puwr=1
mod p? for some integer u , S0 lp;i_l(pi_l) +...+ l”?_1 + 1 = p; mod p?
and pi2 " l”?_l(pﬁl) +... —i—l”?_1 + 1. Thus, the only prime in S; that divides
lpz{rl(pi_l) +...+ l”?i1 + 1is p; and only to the first order. We may take an
odd prime divisor M; of [Pi 7=V 4 4171 4 1(> p;) with M; ¢ S.

Now M; | 1PF —1,butif M; [ 170 —1,thent? =D 417 +1=p;
mod M;. So M; = p; giving a contradiction. The two condition on M; is thus
satisfied.

Now take N = []7_, M; as promised. The smallest positive integer r such
that N | I" — 1is 20 [, pl{" , a multiple of s. For the second condition, we
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_ m t;
need to verify that N { I"/2 — 1 = 12 TlZin' — 1 (if 19 > 0). We break
into two cases: If m > 0, i.e. there are odd prime divisors of s, then from

- m fi
My | 120 T P — 1 and M| is an odd divisor of N, we see N { "% 4+ 1.
If m = 0, then the construction stops at the first step and we have seen that
Mo=N112"" +1.
O

The following lemma is taken from [4] Lemma 2.2. The lemma will be
used to prove that certain representations coming from the Dwork motive are
ordinary.

Lemma 2.4 Suppose that a € (Z")Hom(F Q)+ and that
r:Gal(F/F) - GL,(Q))

is crystalline at all primes v | I. We think of v as a valuation v : F* — Z. If
t: F — Q lies above v, suppose that

dimg, gt (r ®c.F, Bap) /T = 0
unlessi = a; j +n — j forsome j = 1,...,n, in which case

dimg, g’ (r @ F, BdR)Gal(f”/F“) = 1.

Forv | [, letay 1, ..., oy, denote the roots of the characteristic polyno-
) 0.
mial of pLFv: Q1 o

(r ®Tan? Bcris)Gal(fv/Fv)

forany t : Fg s Q. (Here FS is the maximal unramified subextension in
F,. This characteristic polynomial is independent of the choice of t.) Let val,
denote the valuation on @1 normalized by val, () = v(l). (Thus valy ot = v
forany t : Fy, — Q,.) Arrange the ay,;’s such that

Valv(av,l) > Valv(av,Z) N Valv(“v,n)-

Then r is ordinary of weight a if and only if forall v | landalli = 1,...,n
we have

valy (o) = ) _(ari +n—i),
T

where T runs over embedding F — Q; above v.
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Remark 2.5 We will use Deris, ¢ (1), Dy, (r) to denote (r® ro Beri) Gl (Fu/ o)

(r ®; o By)Gal(Fu/Fo) resp. for any p-adic representation  and embedding
T as above.

Below is a lemma regarding the standard big image condition and how
they behave under restriction to smaller absolute Galois group and taking
symmetric power. The lemma is taken from an old version of [1], but a part of
it disappears in the newest version of [1]. Thus, we state and prove it in this
section. The author claims no originality of the following lemma.

Throughout this paper, for any number field M, we use M to denote its
normal closure over Q.

Lemma 2.6 Suppose F/Q is a finite extension with normal closure F /Q and
n € Zo. Suppose also thatl > 2n+73 is a rational prime and thatr : G —
G L (F)) is a continuous representation such that r(Gg) D SLZ(FI) Finally

assume F1/F is a finite extension that is linearly disjoint from F " over F.
Then:

(1) (Symm”_lF)(Gp1 () is enormous.

(2) If F1/F is Galois and linearly disjoint over F from the normal closure H'
—ker adr

of H= FF over Q, then Symm™™'7|¢ F IS decomposed generic.
Proof (1) This is Lemma 7.1.6(2) of [1].

(2) It suffices to show Symm” 7 £ is decomposed generic for some finite
extension F,/F1.

We may assume without loss of generality that F is Galois over Q. Now
by [6] Theorem 2.47(b), adr(Gr) = PGL>(k) or PSL>(k) for some finite
extension k/IF;. We first take an at most qurdratic extension E/F such that
adr(Gg) = PSLz(k) Then by Goursat Lemma, Gal(E/E) = (Z/2Z)" for

some r > 0. Hence F kerad” ind E are linearly disjoint over E by an analysis

of the simple factors of each Galois group. Thus adr(Gg) = PSLy(k) D
~—~ker adr reradF

PSL,(IF;). Now since E C erradr EE - erradr = H’, and so its

normal closure over Q is still H . Now F; and H’ linearly disjoint over F
implies that E1 := EF} is linearly disjoint from H' over E as well. We there-
fore can assume (replacing F by E and F) by E1) without loss of generality
that ad¥ (Gr) = PSL,(k) and F is Galois over Q.

Now we choose a sequence of subfields F = FO/ C Fl/ CcC---CF =F
such that F} is Galois over F/_, and Gal(F;/F/_,) is simple. Set I?l.’ to be
the normal closure of F/ over Q. Hence Gal(flf / E/ _,) is trivial if and only if
F C Fi/_l and is of form A" for some m > 0 where A; = Gal(F//F/_))
otherwise (Goursat Lemma). Now if H N F v = F, then we may apply Lemma
7.1.6 (3) of [1] to conclude.
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Otherwise, there should exist a minimal i such that IZ N I?l.’ # F. Since
Gal(H l F) = PSL;(k) is simple, we see tliat H C Flf . Now minimality
gives F/_ | N H = F,so that A" = Gal(F//F/_,) — Gal(H/F), thus A; =
PSLy(k),m > 0. We claim there exists 0 € Gg such thato H C Fl./l?l/_l.We

may write Fi’ as the composite of o F/ Flf _y»wWhereoy, ..., 0y, are elements of
Gq, the fields o; F/ F/_, is Galois over F/_, with Galois group PSL;(k), and
for any two disjoint subsets 7, J of {1, ..., m}, the composite of o; F/F/_,

for j € I and the composite of o F/ I'FI./_1 for j € J are linearly disjoint over
}71./_1. Now because H C fi’ and fi’_l N H = F, we see that Hl'::l./_1 is a
Galois subextension of I?l/ / I'FI./_1 with Galois group PSL,(k). We may pick
the smallest j such that E; := (o1 F)) - -- (GJ'FL)Fi/—l D Hﬁi/—l' The IEini—
mality gives that E;_; as a Galois extension of F l.’fl does not contain H F’ l.’fl,
whose Galois group over 1”:”;./_1 is simple. It follows that E;_; is linearly dis-
joint with H I?l.’f1 over 1::!.’71. Therefore, restriction map takes Gal(E;/E ;1)
onto Gal(HI?i/_l/E’_l). Observe that E;_; and o Fi/E/_l are linearly dis-
joint over I::l.’f1 ,hence Gal(Ej/I::l.’fl) = Gal(E;/E;_1)xGal(E;/o; Fl.’l?l.’f]).
The latter group Gal(E; /o F/ I::l./_ ) commutes with Gal(E;/E;_;) inside
Gal(E;/ I?l.’fl). Hence under restriction map, by the surjective result proved
above, Gal(E; /o E’E/_l) maps into the center of Gal(HI’*:i’_l/l::lf_l), which
is trivial. This gives us that o F; F{_l D H E’_l. Thus taking o = crj_l is
sufficient for our claim.

Consider the image of Gal(l::l.’fl F!/F}) in Gal(o H/F) under the natural
restriction map. The fact m > 0 gives that F, and I:";./ _ are linearly disjoint
over F/_,, and so Gal(E’_lFi’/F[’) and Gal(ﬁi’_lFi’/}":i’_l) are commuting
subgroups ofNGal(}’f:i’_lFi/ / Fl./: D- Un(flf:r the restriction map to Gal(oc H/F),
since o H N F/_ = F, Gal(F/_ F//F/_,) surjects onto Gal(c H/F), so the
image of Gal(l?lf_lFl//Fl/) lies in the center of Gal(c H/F) = PSL;(k), and
hence is trivial. Therefore, c H C Flf , which contradicts the condition that H’
and F) are linearly disjoint over F. m|

3 Dwork motives
In this section, / can be any odd prime, n be any integer > 2 and N is an
integer that is

e odd, not divisible by any prime factors of /n.
e N > 100n + 100

but note that the case n > 2 and n = 2 differs a little bit, in that there will
be a slight change of the category where the objects we considered lie in. The
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condition of N is clearly not optimal. However, since N will be an integer
that comes from a choice as in Sect. 4, rather than being given, it would not
affect the generality of our main results.

We assume in this section that F' is a CM number field containing ¢y .

We will modify the construction and argument in Sect. 4 of [4] to fit the
situation where no self-duality holds.

Let To = P! — ({oo} U un)/Z[1/N] with coordinate r and Y ¢ PN~1 x Ty
be a projective family defined by the following equation:

XN+ XY+ 4+ XV =Nt X1 X2 Xy,

Y — Ty is a smooth of relative dimension N — 2. We will write Yy for
the fiber of this family at a point s. Let H = M% /N where the second uy
embeds diagonally and

Ho:={(51,....6n) € iy 1 &1---&n = 1}/un C H.
Over Z[1/N, ¢n] there is an H action on Y by:
(";:17"'75N)(X17"'7XN7t) = (Slxlv-"’éNXN’(Sl fN)_ll)

Thus Hy acts on every fibre Y, and H acts on Y.
Fix x a character Hy — up of the form:

N
X (L. e =[]&"
i=1

where

(ar,...,an) = (1,2,4,5,...,(N —n+2)/2,
(N+n-=2)/2,...,
N—-5N—-4,N—-3,0,0,...,0)

when n > 2 is odd,

(al,...,ClN):(1,2,3,4,5,7,8,...,
(N —-n+3)/2,
(N+n—-3)/2,(N+n-1/2,...,N—4,0,0,...,0)

when n > 2 is even, and

@, ...,ay) = (1,2,...(N —3)/2,0,0,0, (N +3)/2,...,N — 1)
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when n = 2.

Note that 3, N —2, N — 1 donot occurin (aq, ...,ay) whenn > 2 is odd,
6,N—3, N—2,N—1donotoccurin (ay, ...,ay) whenn > 21is even, and
there are n + 1 of Os in (ay, ..., ay) in these cases (n > 2).

This character is well-defined because ZlN: 1@ =0mod N.

Let (b1, ..., b,) be mutually distinct residue classes in Z/NZ such that
bi+aj #0in Z/NZforany j € {1,..., N}. The (by, ..., b,) are uniquely
determined since there are precisely n different residue classes whose sum
with a; is nonzero in Z/NZ for any j € {l,..., N}. Hence we have the
following expression:

L,L2,(N—-n+4)/2,(N—n+6)/2,...,

(N+n—-6)/2,(N+n—-4)/2,N—-3 n>2odd
{br,....,bp} =141,2,3,(N—n+5)/2,(N—n+7)/2,...,

(N+n-T7)/2,(N+n—-5)/2,N—6 n > 2even

(N—=1D/2,(N+1)/2 n=2
(whenn = 3, 4, this is interpreted as {by, ..., b,} = {1,2, N—-3},{1,2,3, N—
6} respectively.)
We have the following combinatorial property for the set {by, ..., b,} C
Z/NZ.

Lemma 3.1 Let n > 2. Consider {by, ..., b,} as a subset of {0, 1, ..., N —
1} = Z/NZ. If for some a € (Z/NZ)*, {aby,...,ab,} = {b1,...,b,}
holds, then o = 1.

Proof If niseven, then 1 € {by,...,b,} andsoa € {by,...,b,}. lf « = 2,
then 2 € {by,...,b,} and s0o 4 € {by, ..., b,}. But by the assumption N >
100n +100,3 <4 < (N —n+5)/2,sothat4 ¢ {by, ..., b,}. Thus a # 2.

Same argument (3 < 9,36 < (N —n 4+ 5)/2) shows that « # 3, N — 6.
If n = 4, we are done. Forn > 6, if « = (N + x)/2 for some x odd and
x € [-n+5,n—5],then 20 = x € {by, ..., b,}, but by assumption on N and
n,wehave (N+n—5)/2 < N—n+5<N-land1 <n—5 < (N—n+5)/2.
Therefore {1,3,...,n—5 N—n+5 N—n+7,..., N=1}N{by,...,b,} C
{1,3} and so x = 1 or 3. In either case, if&« = (N+x)/2 € {by, ..., by}, then
(N—x)/2 € {b1,...,by}, 50 —x%2/4= (N+x)/2-(N—x)/2 € {b1, ..., bn},
thus N — 1€ {4by,...,4b,} or N — 9 € {4by, ..., 4b,}. Viewed as a subset
of the representatives {0, 1,..., N — 1}, {4b1,...,4b,} C {2,6,...,2n —
10,N — (2n —10),N — 2n —14),...,N — 2} U {4, 8,12, N — 24}. But
N—1,N—-9 > 2n—10, 12, so they must lies in {N — (2n — 10), N — 2n —
14),..., N — 2} U{N — 24}, a contradiction.

Ifnisodd, again 1 € {by,...,b,} andsoa € {by, ..., b,}. If « = 2, then
again 4 € {by,...,b,}. But2 < 4 < (N —n + 4)/2 gives a contradiction.
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Similarly o # N —3 because 2 < 9 < (N —n+4)/2.If n = 3 we are done.
Forn > 5, we have « = (N + x)/2 for some x odd and x € [—n +4,n —4].
Then 2o = x € {by, ..., by}, but by assumption on N, we have (N +n —
4)/)2 < N—-n+4<N-1land1l <n—4 < (N —n + 4)/2. Therefore
{1,3,...,n—4,N—n+4, N—n—+6,...,N=1}N{by, ..., b,} C {1, N-3}
and so x = 1 or —3. In either case, if « = (N + x)/2 € {by, ..., by}, then
(N—x)/2 €{by,..., by}, 50 —x2/4= (N+x)/2-(N—x)/2 € {b1, ..., bn},
thus N—1 € {4by,...,4b,} or N—9 € {4by, ..., 4b,}. Viewed as a subset of
the representatives {0, 1, ..., N—1},{4by, ..., 4b,} C {2,6,...,2n—8, N—
2n—-8),N—(2n—12),...,N-2}U{4,8, N—12}, But N—1, N—9 > 2n—
8, 8, so they must liein {N —(2n—8), N—(2n—12),..., N -2} U{N — 12},
a contradiction. O

One reason for this choice is that when n > 2 we want to avoid mak-
ing the set {ay, ..., ay} self-dual so that Lemmas 3.3 and 3.7 hold. And the
above lemma will be crucial to avoid self duality. On the contrary, if the set
{ai,...,an} is chosen to be self-dual , the V[A] defined below would be a
Galois representation that takes values in GSp;,.

For any prime A of Z[1/2N, ¢{x] of residue characteristic /, we define the
lisse sheaf V, /(Ty x SpecZ[1/2NI, {n])er by:

Vi = (RN 2m, Z[gn 1) % Mo
when n > 2. When n = 2, we use the same formula to define the object U
for a prime A of Z[1/2N, ¢n]", following the notation of Sect. 4 in [4].
Similarly, for any nonzero ideal n of Z[1/2N, {y] of norm M, we can
define the lisse sheaf V[n]/(Ty x SpecZ[1/2NM, {n])er by:
VInl = (RN m.(ZIgn]/m)) %o
when n > 2, and we use the same formula to define the object U[n] for a

nonzero ideal n of Z[1/2N, ¢n]™.
Since H acts on Yy, we have the following decomposition:

N N
Vio =P Vii. Vinlo = P Viln]
i=1 i=1

here V) ; and V;[n] are the subspace of V} o, V[n] where H acts by the char-
acter y;:

N .
aj+i
s~ []¢
j=1
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Again, we write same decomposition in the case n = 2 as into U, ; and
Ui[n].

Fix an embedding 7 : Q(¢y) < C such that t(¢y) = /N Let 7 :
Y(C) — Typ(C) denote the base change of 7w along t, viewed as a map of
complex analytic spaces and Vp be the locally constant sheaf over Ty(C):

Vg = (RN 27, Z[cy]) 0 Ho

when n > 2. And we denote the same object in the case n = 2 as Up.

Let 7 also denote the induced base change (Tp)c — To x Spec Z[1/2N M1,
¢n1. Under previous notation, Vg ®z(¢y1 Z[{n 15 corresponds to T*V; under
the equivalence between locally constant analytic Z[{y];-sheaves on Ty(C)
and locally constant etale Z[¢y];-sheaves on (Tp)c.

Similarly, Vg ®7¢y1Z[{Nn]1/n corresponds to TV [n] under the equivalence
between locally constant analytic Z[{x]/n-sheaves on Ty(C) and locally con-
stant etale Z[{y]/n-sheaves on (Tp)c.

Similar relation holds when n = 2, see [4] Sect. 4.

Let Tj = P! — {0, 1, 0o} with coordinate #' and ¥’ ¢ PVN~! x T, be a
projective family defined by the following equation:

XN XN 4 TIXN = NX X X

Then ¢’ + ¢V gives an N-fold Galois covering Ty — {0} — T and X} —
X1, X, — Xo..., X}, = tXy identifies the pullback of 7 : Y/ — 7] along
this covering with = : ¥ — Yo — Ty — {0}. Over Z[1/N, ¢n1, Hp acts on Y’
by

1, ENXY, L Xy ) = EX L ENX L )

This Hy action is compatible with the Hp action on ¥ — Yj.

Let 7' : Y'(C) — T;(C) be the base change of 7" along t viewed as
a map of complex analytic spaces and let V, = (RN=27.Z[en DX H0 be a
locally constant sheaf over 7;j(C). Then the pullback of V' along the covering
To(C) — {0} — T4(C) is naturally identified with Vp over Tp(C) — {0}.

Fix a nonzero base point t € To(C) and let ¢’ be its image in 7;;(C) . Now
we study the image of the monodromy representation:

pr T (To(C), 1) = GL(V,).
We in turn consider the monodromy representation:

pr = T(TH(C), 1) — GL(VL:?,t’)
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Proposition 3.2 The sheaves Vy, V[nl, Vg, Vj are locally free over Z[¢n 15,
ZIEn]/n, ZIEn], ZIEn] of rank n respectively .

Proof Locally freeness follows because the family is smooth and proper. For
the rank part, one only need to check at the fibre over 0 and apply Proposition
7.4 of [7].

O

Similar relation holds in the case n = 2, see [4] Sect. 4. The different
aspect for the case n = 2 is that we may use the locally constant sheaves
Vi, VInl, Vg defined there with coefficients Z[¢n1), ZIen]T/n, Zign]t
respectively, such that V; ®zqy1+ ZIEn], VIn] Qzeyi+ ZIEN] VB Qzen1+
Z[¢n] are isomorphic to U,, U[n], Up respectively (in their notation). Now
we consistently work with V,, V[n], Vp, regardless of whether n > 2 or
n=2.

We already have the counterpart of Lemma 3.7 as provided by Corollary
4.7 of [4]. i.e. p,(m(To(C), 1)) = SL(Vp,/X) when n = 2. So we focus on
the case n > 2 until the end of the proof of Lemma 3.7.

Let y0, v1, Yo be the loop around 0, 1, co, generating m(TO/((C), t') subject
only to the relation 9y yYs0 = 1. Here we let y be such oriented that its image
in Gal(To(C) — {0}/ T{(C)) is e*™/N = z(¢w)

Lemma 3.3 (1) p,(yo) has characteristic polynomial ]_['J’-:l (X — g“]]z,j) where
(2) py(Veo) has characteristic polynomial (X — 1)".

(3) pr(y1) is a transvection, i.e .: it is unipotent and ker(py(y1) — 1) has

dimension n — 1.

Proof (1) The action of 3 on Vé’ e
which is the scalar multiplication by g“]’;, on the x; eigenspace of Vp . By
proposition 7.4 of [7], the x;-eigenspaces are nonzero if and only if O ¢ {i +
ai,...,i +apn},ie.i € {by, ..., b,}, in which case the eigenspaces are all
of rank 1. Hence the expression of the characteristic polynomial of p, (yp)
follows.

(2) Suppose Zj is the variety T(X{V + Xév 4+ +X11\\,’) =NX1Xy--- Xy
contained in PN ~! x A!'. We use p to denote the projection Zg — Al. So it
suffice to show the monodromy around 0 of the larger local system RV =2 p,.C
has charateristic polynomial a power of (X —1). We apply Lemma 2.1 of [14]
base changed to C via W (k)[T,U*] — C[T], U — 1, T > T and a fixed

isomorphism of W(k)[%] = C, to conclude that there is a blowup X of Z
that is an isomorphism outside the fiber over 0 and pp, and X is semistable
over the base A"\ ;. Note that we call a map semistable if the divisor (T') is
a reduced normal crossing divisor and does not have self crossing throughout

this paper.

is equivalent to the ¢y action on Vp o,
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Because the blowup is an isomorphism outside the fiber over 0 and uy,
we are reduced to show the same monodromy result for the family X over A!
around 0. Thus, by the vanishing cycle technique used to prove local mon-
odromy theorem (cf. [11] Theoreme 2.1.2 and its proof), we see that such
monodromy is unipotent. Note that this makes use of the fact that our normal
crossing divisor (7') is reduced, i.e. the exponents e; as in the notation of [11]
are all 1 and hence so is their greatest common divisor e.

(3) The proof is the same as part 2 of Lemma 4.3 in [4]. O

Now we study the image of the monodromy map. Let A be a prime of
Z[¢N] (of Z[¢n]T when n = 2) of characteristic [ and 5, : 7 (TO/((C), th -
GL(Vg /L), p; : mi(To(C),t) — GL(Vp,/A) be the reduction of p, , p;
by A respectively.

We first give a description of p, by Lemma 3.3 and the following lemma.

Lemma 3.4 Let p be the representation p : m(T5(C),t") — GL,(Z[¢N])
sending yo to B!, yso to A, and y1 to BA™!, where

00---0—A,
10---0—A,_
A= |O01---0-4, ’
\00 - 1—4,
00---0—B, \
10---0—By_y
B=|01---0-B,» ,
\00 - 1-B

and A;, B; € Z[¢{N] are the coefficients of the expansions:

X —D"=X"+A X"+ 4 A,

n
[Tx —¢y") = X"+ BiX" "'+ + B,.

i=1

Then as representation into G L, (C), py and p are equivalent.
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Proof See Theorem 3.5 of [3]. Observe also that p(y;) = B A~ has the form

¢, 0---00
Ch—11---00
C; 0---10
Ci 0---01
with all the C; € Z[¢y]. o

Note that the matrix A actually has minimal polynomial (X — 1)" and is
conjugate to py (Yoo). We have the following corollary.

Corollary 3.5 p,/(Yso) has minimal polynomial (X — 1)" and hence so is the
image of the monodromy around oo under p;.

In the following, we will use the terms “maximally unipotent” and “maxi-
mally nilpotent” to refer to the properties mentioned above.

Definition 3.6 For a unipotent (resp. nilpotent) linear operator ¢ on an n-
dimensional vector space, we say it is maximally unipotent (resp. maximally
nilpotent) if its minimal polymial is (X — 1)" (resp. X").

Letp : my (T(;((C), "y — GL,(Z[¢N]/)) be the reduction of p with respect
to A. (Following the argument of proposition 3.3 of [3]) Then if p has block
upper-triangular form when base changed to k(X), we see o(y1) — 1 would
vanish on one of the two blocks since it is a transvection, so that the eigen-
value of p(yp) and p(yYso) Would be the same on that block, which gives a
contradiction because none of the b; is 0. Thus p is absolutely irreducible.
Let oy : w1 (Ty(C), t') = GL(V,, /A) be the reduction of p; by A. It has
the same trace with p by Lemma 3.4. So their semisimplification are equiva-
lent and thus they are equivalent and p, is absolutely irreducible.

Lemma 3.7 Assume the residue field k(L) of A is Fir(So r is the smallest
integer such that N | 1" — 1). Under the assumption that N { I'? + 1 if
r is even and n > 2, we have that p, (m1(Tj(C), 1)) = SL(VZ/”, /A) and
P (@1 (To(C), 1)) = SL(Vp,1 /).

Proof The case when n = 2 is already resolved by Lemma 4.6 of [4]. We
now focus on the case n > 2.

Let H be the normal subgroup of m1(7j(C),t') generated by y;. Then
m(Ty(C), t')/H is cyclic, and is generated by yoH or ysH. Therefore
the index [p, (1 (T3(C), 1)) : p,(H)] divides both the order of o, (yo)
and 0,/ (yso). The former is a divisor of N and the latter is an /-power, thus
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Py (m(Ty(C), 1)) = Py (H). So p, (w1 (T5(C), t')) is generated by transvec-
tions, hence by the main theorem of [18], o,/ (711 (T;(C), t')) is conjugate in
GL, (k())) to one of the groups SL, (k), Sp,(k) or SU (n, k) for some sub-
field k C k()). Here SU (n, k) is defined when [k : [F;] even:

SU(n, k) :={g € SLy(k): 0(g)'g = 1.},

where o is the unique order 2 element in Gal(k/F;). We want to show
Py (1 (T3(C), 1)) = SL,(k(1)) by excluding the other cases.

o If ﬁt/(m(To/((C), t')) is conjugate in GL,(k(A)) to one of the groups
SL,(k), Spn(k) or SU(n, k) for some proper subfield k ?Ct k(L), then
there exists a nontrivial o € Gal(k(A)/F;) that preserve the eigenvalues
for any elements in o,/ (71 (73(C), t)). Consider p,(yp), this would con-
tradict Lemma 3.1.

e If o,/ (1 (T§(C), t')) is conjugate to Sp, (k(1)) , by Proposition 6.1 of [3],
we have

{b1,...,bp} ={=b1,..., —by},

which contradicts Lemma 3.1.

o If p,/ (1 (T§(C), t")) is conjugate to SU (n, k(1)), then we are in the sit-
uation r = [k(A) : [;] is even. Take the eigenvalue of both sides of the
equation o (5, (7)) = (B (7))~ we have

(b, ..., 1"%by) = {=by, ..., by}

By Lemma 3.1, we must have ///> = —1 mod N. This contradicts the
condition that N {I"/? 4 1if r is even.

Thus o,/ (1 (T5(C), t')) = SL,(k(A)) . View p, as defined on 771 (Tp(C) —
{0}, #) via the surjection 71 (7o (C)—{0}, 1) — 71 (Tp(C), t). Since 71 (To(C)—
{0},1) <« nl(T(;((C), t') with quotient group cyclic of order N, we have
0, (w1 (TH(C) — {0}, 1)) < SL,(k(X)) with quotient cyclic of order divid-
ing N. Now as the only cyclic composition factor of SL;(k(1)) have order
dividing n, we see p,;(71(To(C), 1)) = p, (w1 (To(C) — {0}, 1)) = SLy(k(R)).

O

Given any nonzero ideal n of Z[1/2N, ¢n] (of Z[1/2N, ¢yt whenn = 2)
and any finite free rank-n Z[¢y]/n (Z[¢n]T/n when n = 2)-module W with
a continuous G p-action, we can view W as a lisse sheaf on (Spec F).;. Now
A"V [n] is a lisse sheaf over (Tp) ¢ of rank 1, and the associated monodromy
representation det p : 71 (7Tp,t) — GL(A"V|[n];) restricted to nf’eom(To, 1)
is trivial since det(yp) = det(y;) = det(ys0) = 1 and the analytic | is dense

geom

inz " (To, t). Thus det p factors through 1 (Spec F) = G .
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Suppose we are given an isomorphism of lisse sheaf over (Tp) r via some
prescribed isomorphism of G r characters:

¢: N\ Wanr — [\ Vinl.

Let ¢5 denote the base change of ¢ to some scheme S over (7p) . Define the
moduli functor Ty as following:

Tw : (Sch/(Ty)F) — (Sets)
S = {¢ € Isomg(Wg, VInls) : A"¢ = ¢s}

It is representable by a smooth Ty /(Tp) F.

Proposition 3.8 Under the notation and assumption above, if n = PR,
where P31, P are two prime ideals of Z[ L] having different residue charac-
teristic Iy, I (prime to 2N ) respectively. If each of the l; satisfy the following
condition:

e if n > 2 the smallest positive r such that N | I[ — 1 is even, then N {
%41
; .
and max{l, I} > 10, then Tw is geometrically connected.

Proof Since w1 (To(C),t) — SL(Vp,:/PB1) and 71 (To(C),t) — SL(Vp./
P,) are surjective by Lemma 3.7 and our condition, by Goursat Lemma we
see that there exist isomorphic quotient ¢ : SL, (IE‘,T) JH = SL,,(IFIE) /H>
such that the image of m1(7p(C), t) in SL(Vp /n) is the preimage of the
diagonal {(t, ¢ (t)) € SL, (Flf) JHy % SLn(Flg) /H3} under the natural quo-
tient map. Here we let the residue field of By, I3, be Fir, Fli respectively.
Assume without loss of generality that /; > 10. Then the only proper
normal subgroups of SL,(IF;r) are contained in its center and the quotient
group PSL,(IF;r) is a simple group. Thus if SL,(F;r)/Hy is not trivial, then
it must have a Jordan-Holder factor isomorphic to PSL, (FZT)' Since /1 > 10,
any Jordan-Holder factor of SL, (Fzg) with I # [{ is not isomorphic to
PSLn(IFl;) since PSL,,(IFZ;) is simple non-Abelian and PSL,,(IFIY) is not
isomorphic to PS Ln(Flé) by Theorem 2 of [2]. This contradiction gives us
SLn(Fli)/Hl = 1 and the map 71 (Tp(C), t) — SL(Vp ;/n) is surjective.
Hence for any ¢ € Tp(C) and any two geomereic points of Ty above it
which correspond to two isomorphisms i, ¥» : W — V[n], that respects
¢ (not necessarily respecting any Galois action because the points are geo-
metric, hence such points always exist), we can pick a path y € nigeom(To, 1)
such that its image under the monodromy map is ¥ o ¥ L Going along y
induces a path in Ty (C) connecting v; and ¥, (viewed as points in Ty (C)),
so geometrically connectivity follows. m|
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Lemma 3.9 Let ¢y € F, A is a prime of Q(¢n) (Q(¢n)T when n = 2) over
the fixed prime | and k()) be the residue field, then viewing det V[A] asa G F
representation as explained above, we have det V[A](GF) C (IF Sk(A) )",

Proof By the analysis before, it suffices to calculate the G r actionon V) o =
EIB{VZIVA,i = EBLNZIHN*Z(YO, Z[{N]A)Xi’H, where Yy is the Fermat hypersur-
face X{V + -4 X% =0inPV~! and Xi : H — upy is a character defined
by:

a,+t

&= EN)HHS

j=1

By [7] Proposition 7.10, Vy ; # O (in fact 1-dimensional) only when i €
N

{b1, ..., by}, and Frob, acts on it by a scalar q_1 H gW,aj+i),wherevis
j=1

any place of F whose residue characteristic does not divide N orl, g = #k(v),

and g(v, a) (fora € Z/NZ) is the Gauss sum defined with respect to an fixed

additive character ¢ : F, — @Q)*:
1—
gv.a)=— Y t(x V)Y (x)
xeFy

here we also fix an isomorphism ¢ from the group of N-th roots of unity in
F7 and the group of N-th roots of unity in ;. We remark that each g(v, a)

N
depends on the choice of i but g~ 1_[ g(v,aj +1i) does not.

j=1
Thus Frob,, acts as

n N
a " [[[]ew a+bp

j=li=l1

under det V;_o.
Considering the choice of a; and b}, the product can be rewritten as

HHg(v a,+b>—(1_[g(v b»”]‘[ [ ew.s+bp

j=1li=1 j=1s#—by,Vk
= (H g, b)) ([ [ ew. )"/
j=1 s#0
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[T &b —b)

i, je{l,...n}i#j

=(Jew. o))" Jew.n"/ [] 4

j=1 5#0 i,je{l,...n}i<j
n

= ]ew@ b)) @™ "2 /g" 023
j=1

for v whose residue characterisitc is odd, and here s always ranging through
the residue class in Z/NZ. In the last two steps, we use that for any nonzero
a€Z/NZ,

g(v, a)g(v, —a) = (="' 7' g = q.

n
We further verify that 1_[ g(v, bj) € Qu(¢n) by checking: Vo € Gy

j=1
ifo(lp)=¢ l‘} (p is the residue characteristic of v), then

o([Tew. by = Y =0 ™)y x))
j=1

Jj=1 )cG]F(}<

“T1 >~ )iy o)

j=1xquX

I3 1@V iyw

Jj=1 xe]Fl}(

=[Tr@™» [T Y~y
j=1

Jj=1 xeF(}<

=[[sw.5) (3.2)
j=1

since Y _; bj = 0 mod N.
n
This suffices when n > 2. When n = 2, we have to show l—[ g, bj) €

j=1
Qi(¢n)T. For this, it suffices to take a o € G, (¢y)+ such that o (¢y) = g‘](,]
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and o (¢p) = ¢p, and

o(Hg(v b)) —a(]‘[ S 1 Ty )

Jj= lxeFX
2

“T1 3~ ™) iy

J=1xeFy

=TI 3 e ™iypw

J=1xeFy

(3]

2
=[[s@. ) (3.3)
j=1

because {b1, by} = {—b1, —b3}.
Therefore, we deduce that det V[A](G F) lands in (F k(L))"
O

We now use the comparison theorems to deduce some p-adic Hodge the-
oretic properties of some V) ;. Before doing that, let us fix some notation,

following [4].
Let Hgr denote the degree N — 2 relative de Rham cohomology of Y:

Har = Hi 2(Y/(To x Q(EN))).

It is a locally free sheaf over Ty x Q(¢y) with a decreasing filtration F T Har
by local direct summands. For o € Gal(Q(¢n)/Q) , let Har.6, F/Hgr. s be
the “twist” of Hgr, F’/ Hgr respectively:

Har.o = HaR o1 giy) QUN) - F/Har.o = FIHar @51 gcy) QEN)

Hp acts on Har, F/Hgr in the usual way. Let Var o, F J V4r,o denote the
x eigenspace of Har o, F/Hdr o:

ViRo = (Har.0)* ™, FIVaR s = (F/Har o )00

where we view HdR,g, Fli Hd_R,(7 as Q(¢y) vector space by acting on the right.
Let gr/ Var,o = F/Var,o/F/ +1 V4r.o be the associated graded pieces.
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Again H acts on Hgr 6,0, F J ‘Hdr. 5,0, and we have:

N N
Vir.0.0 = EP Vir.oi» F/Vario.0 = D F/ Varoo.i
i=1 i=1

here ViR o.i» F J Vdr,s,i are the subspace of Vyr 5.0, F J V4R, 5,0 resp. where H
acts by:

N .

aj+i

e~ []g
Jj=1

and we let grj ViRoi = F J Var.s,i/ F J+l Var,s,i be the associated graded
pieces. Let A be a prime of Z[{y] of characteristic / and v be a place of F
over [. Here A is the prime of the coefficients field as before and v is the
place we will restrict to in the p-adic Hodge theory setting. We further let
w be the place of Z[¢y] below v. Now if ¢t € Ty(F)), for an embedding
o : F, = Q(¢w),, by the etale comparison theorem, we have

(HY2(Y, % Fy. ZHEw):) ®ziet, QEND) ®o, £, Bag) /5
= H *(Y/F) ®F,0 Qn)y

as filtered vector space. Taking the x eigenspace of Hp action on both sides
gives (notice the twist):

(Vo ®zizy1, QML) ®o, F, Bar) T/ ) = VR, 019yt ®F,0 QEND;,

as filtered vector space.
Similarly, fori € {1,2,...,N}and o : Q(¢{n)w — Q(n);, view 0 €
To(Q(¢N)w), we have:

((V)L,i ®Z[§N]A Q(;N)k) ®‘77Q(§N)w BdR)Gal(Q(CN)w/Q(CN)w)
= VaR,01cy).i ®Qn) w0 QUEND3

Fora € Z/NZ, we will write a as the representative element in the range
{1,2,..., N} of a. Let 9 : Q(¢x) — C be the embedding : ¢y +—> €27i/N,
Assume o ! (¢y) = SN
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Lemma 3.10 Under the notation and assumption above, we have

(1) Vars,i # (0) only when i € {by, ..., b,}. Andfor each such i, Vyg o, is
a one-dimensional Q(¢n)- vector space and gr! Vg ;i # 0 only when

j=M@) +#belb,... by):ab <ai)

here M (a) is some constant determined by a.

(2) grj Var.o is locally free of rank 1 over Ty x Q(¢n) when M(a) < j <
M(a) +n — 1 and is (0) otherwise. Vg s is a locally free sheaf over
To x Q(¢wn) of rank n.

Proof Base change to C gives that

8t/ Var 0,1 ®qey)mo—! C = H N 2 (N0(C0), Oatar+i....atan+i)

where we define Y (C) via the embedding 7 and right hand side of the iso-
morphism is defined as the eigenspace of H/-¥ =27/ (Y, (C), C) where H acts
by & — ]_[N al@j+i) . Proposition 7.4 and 7.6 of [7] gives that right hand
side is nonzero 1f[ and only if

e indices a(a; +1i),...,a(ay + i) are all nonzero mod N
e and

j+l=(@@ +i)+...+alay +1))/N,

ie.i € {by,...,b,} and we derive the formula of j for a fixed such i as
below. For1 <d < N, let

jd)y=(aay+d+...+aay +d)/N — 1.

Note that the nonzero a; only appears once in the sum. Then j(d 4+ 1) =
j(d)+1ifd = ab; mod N for some b; (in this case, none of aa; + d is N),
and j(d + 1) = j(d) if otherwise (in this case, exactly one of aa; + d is N).
Use this formula to induct,we see that taking M (a) = j (1) gives the formula
in (1).

Since gr/ Var . is locally free, it suffice to look at the fibre over 0. Lining
up ab; in increasing order, we see that the j such that grf Var,s,0 7 0 are
precisely M (a), ..., M(a) +n — 1. (2) follows immediately. O

Lemma 3.11 Under the notation and assumption above, and lett € F, as a
point in Ty(Fy), we have
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(1) Vi is a de Rham representation of Gr. For o : F, — QUn),, if
o lew) = ¢y then the Hodge-Tate weight of V. 1 ®zcy1, QEN)s with
respect to o are

{M(a), M(a)+1,...,M(a) +n —1}.

(2) Ift € OF, and N —1 ¢ mp, then V, ; is crystalline.
(3) Ifl = 1 mod N and t € wmp,, then V) ; is ordinary of weight (A ;) with
Ari = M(ay), Vi, where a; satisfy r—l(gN) = ;‘K,T .

Proof (1) is clear from the comparison theorem and Lemma 3.10.

(2) follows from the fact that these Y; have good reduction modulo the
maximal ideal of F.

(3) we observe that since t € mp,

(VA,O ®r,F Bcris)Gal(F/F) = (V)»,t Q. F Bcris)Gal(F/F)

as ¢-module because they can both be written as the x -eigenspace of the crys-
talline cohomology of the reduction of Y. Moreover, the Hodge-Tate weights
of Vj o and V) ; are the same by (1). Thus by Lemma 2.4, V) ; is ordinary of
weight (M (a;)) if and only if V) ¢ is ordinary of weight (M (a;)) .

Recall V), o = @f\’: 1 Vii as Gy, = G, representation. They are both
Q(¢wn)n = Q vector space. Since

((Vk,i ®Z[§'N]A Q(;N))L) ®77Q(CN)w BdR)Gal(Q(fN)w/@(CN)w)
= VdeT\Q(CN)vi ®Q(§N)w,‘[ Q(;N)A

V,.i is 1-dimensional when i € {by,..., by} and has Hodge-Tate weight
M(a;) +#{b € {by,...,b,} : arb < a;i} in this case. Thus

n—1
Vio®g Q = @@1(—M(Clr) —1)
i=0

as Igy), = lg,-representation. Therefore (3) follows. |

Lemma 3.12 Under the notation and assumption above, and let )" be a place
of Q(¢n) above U', where I” # 1 is an odd prime not dividing N. Then
view Vy ., as a GF, representation, consider the Weil-Deligne representa-
tion WD(Vy, ;) = (r1, N) associated to it. We have that the operator N is
maximally nilpotent.

Proof The same argument as in part 2 of Lemma 1.15 of [10] gives that I,
acts on Vs, as exp(t, N), where tf, is the projection onto the Z-factor in
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the tame inertia group of F, and N is a maximally nilpotent operator because
the monodromy around oo of the local system Vp ; is maximally unipotent.
Now the claim follows from the definition of the Weil-Deligne representation
associated to a Galois representation. O

Remark 3.13 We remark that the proof of the main theorem of [14] shows that
when v(r) < 0, V. ; (as a G, representation) is semistable whose associated
Weil-Deligne representation also has a maximally nilpotent operator N. This
should come as no surprise because of the famous conjecture that geomet-
ric families of Galois representations are strongly compatible and the above
lemma. However, this conjecture being largely unknown, we cannot deduce
one from the other between the two maximally nilpotence of the operators N
mentioned above. The full strength of the main result of [14] is not needed
in this paper, but we include this remark here because we feel it could be of
separate interest.

4 Proof of main results theorem 1.1 and theorem 1.4

We fix a non-CM elliptic curve E/Q. For any prime /', let 7 i be the Gg
representation Helt(E, Fy). Writen = 1m, 1 tm

We could find (by Lemma 2.3) a positive integer N satisfying the following
properties related only to 7, F2¥ and n as given in Theorem 1.1.

e N is odd, and is not divisible by any prime factors of /n, any prime that
is ramified in F2' and FX*'" and any prime where the elliptic curve E has
bad reduction.

e N > 100n + 100

o FpF' C Fi(¢y) , where F is the finite field generated by all the m-th
roots(hence n-th roots) of elements in the field ;s we choose such that
the residual representation ¥ : G — GL,(F;s). And when n = 2, we
further want that F;(¢y) = Fy for some r even and FpF' C Fi(en)t.
These all amounts to the condition that the smallest positive integer r such
that N | I” — 1 is divisible by certain integers.

e Let[F;(¢n) = Fr. When r is even, we have N { "% 4+ 1.

Set Fa°ld 4 be the normal closure over Q of F avfkerr(g). Thus by the
condition above, Q(¢y) and F2°4 are linearly disjoint over Q, since any
rational prime p that is ramified in their intersection has to divide N while
also ramified to F2°!4, Such prime does not exist, so their intersection is
unramified over Q and thus must be Q. Hence F2°!4 and F(¢y) are linearly
disjoint over F. Following the proof of Corollary 7.2.4 of [1], we can prove
the following statement:
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Proposition 4.1 In the above notation, there exists a rational prime I’ such
that:

I"=1mod N.

I' > 2In + 5 and is unramified in F.

rEr(Gg) = GL2(Fy), here F is the normal closure of F over Q.
Jdo € Gr — GFy) such that v g y (o) is a scalar.

E has good ordinary reduction at l'.

And there exists a finite Galois extension Fz‘lmid /Q and a finite totally real
Galois extension F** /Q unramified above the prime divisors of N such that:

° anvoid N Favoid — Q,
° Fsuﬁm FavoidFZavoid — Q,
—ker7 g avoid

C Fgvoid,

e Q

o F®oid gpg FZ‘ZVOid are unramified above prime divisors of N.

and for any finite totally real extension F'] F such that F' N anw’"d =Q
Symm”flrE,l/ |G ., is automorphic .

Proof We first pick an [’ satisfying the listed properties. This can be done
because the first condition give a set of primes of positive density. The second,
third and fifth condition exclude a set of primes of density O(the third by [16]
and the fifth by [15] Theorem 20), while the fourth condition follows from
the second and the third.(Just pick a u € F;; with u> #1lando € G 7 such
that TE/l (0) =u.)

Carry out the proof of Corollary 7.2.4 of [1] to F avoid _  pavoid g
E, M = {n — 1}, L = {the prime divisors of N} and take the / in the proof
to be the rational prime I’ we just picked. Note that the properties of I’ listed
in our proposition implies all the properties of / needed in the first paragraph
of proof of Corollary 7.2.4 of [1].

Inspecting the proof closely would give that the additional properties (the
third and fourth of the lower bullet list) also hold:

The third property follows from the choice of an“"’id =F f‘VOidL 3 in the 4th

—kervp

line of page 208 and L3 = L,Q
page 206 of [1].

For the fourth property, F°'¢ unramified over £ follows from the choice
of N and F2aVOid unramified above £ follows from

in the second from last paragraph of

E,l

. . —ker7r . .
1. L3 unramified above L since Q “TEV is unramified above £ and that each

G J—
—kerInd Ly, . ) . .
Q “Q""™ is unramified over £ (¥, is unramified over £, see the prop-

erties of ¥, in the beginning of Page 182 and L is also unramified above
L, see the paragraph before the last paragraph in Page 181) gives that their
composite L, (page 182) is unramified over L.
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2. F f‘“’id is obtained from applying Proposition 7.2.3 of [1]to F = Fy =
Q (the F is that in the proposition, not our F), {ry,, m € M}, L and
F&vold[ 1 (See the second paragraph of Page 183). In terms of the proof of

Proposition 7.2.3 of [1], F*°!d = @ker M7 (¢r) with 7, unramified above
Land !’ ¢ L (See the last line of Page 180). O

Note that the condition on N,I,[’ guarantees the hypothesis of N, in
Sect. 3 are all satisfied, and [’ satisfy the same hypothesis as [ with respect
to the same N. In particular, the conditions of Proposition 3.8 are satisfied.

Now, apply Lemma2.1to F = F, M = F(¢{y), Fo = FaVOidFZaVOidFSUff({N),
to see we may take a finite CM Galois extension £/ F with E = LM for some
totally real Galois extension L/Q such that L and Fy are linearly disjoint over
Q, and that we may find some characters x : Gal(f/ E) — (Z[¢n]/2)* and
x2 : Gal(F/E) — (Z[tn]/A)* such that (T x ¥2)" = (det VIAM]) ®
det(r x Symm"_lrE,l/)V as G g-module. The condition of Lemma 2.1 is ver-
ified below.

On the side of characteristic /, fix a prime A of Q(¢y) (Q(¢n)™ when
n = 2) and denote the residue field by k(A). Note that the condition of N
in the beginning of this section gives that det 7 actually has image landing in
(k(X)*)". We also assumed that F2 C k()), n | #(k(1)™). Hence, applying
Lemma 3.9 to the field F(¢y), we see that on the characteristic / side, we
have det V[A] ® (det7)" (as a G p(¢,) representation) has image in (k(1)*)".

On the other side of characteristic I/, fixing a prime A’ of Z[¢y] (Z[¢en1T
when n = 2) over [/, we have that det Symm”_leJ/ = (chc)”(”_l)/z,
which have image in IFZXQ. Applying Lemma 3.9 to the prime I’ to see that
(det Symm”_IFEJ/)v ® (det V[1']) (as a G f(¢y) representation) has image in
(k)"

Let W be the Z[¢y]/AA"-module with a G g action given by the represen-
tation (X1 ® 7) X (2 ® Symm”_lFE,p). The isomorphism (x1 X x2)" =
(det V[AL]) ® det(F x Symm”_lrEvlf)v induces an isomorphism

¢: N\ Wane —> \ VI

. In this way, the moduli functor Ty is well-defined by ¢ over E.

We see that the conditions of Proposition 3.8 are satisfied for N and [, I’.
Thus Tw is geometrically connected.

Note that Favoid pavoid psuff and My = F(¢y) are linearly disjoint over F
because F alVOidF2"W°idF suff and Q(¢y) linearly disjoint over @@, which in turn
comes from Favoid FZaVOid, FSUT a1l unramified over the prime divisors of N.

Since L is linearly disjoint with Fy over Q and M C Fp, we have that
E = LM and Fy are linearly disjoint over M. Now E and F aVOisza"OidF suff
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are linearly disjoint over F, because E N F a""‘dF avold prsuff — 7 A1 N Fy N
Fav01d Fav01d Fquff MnN Fav01d Fav01d F%uff F
We W111 need a theorem of Moret -Bailly from [10].

Proposition 4.2 Let F be a number field and let S = S1 L1 § L1 S3 be a finite
set of places of F, so that every element of Sy is non-archimedean. Suppose
that T/ F is a smooth, geometrically connected variety. Suppose also that

e forv e Sy, Q, C T(Fy) is a non-empty open subset ( for the v- topology)

o forv e S, Q, C T(F)") is a non-empty open Gal(F]" / F,)- invariant
subset .

e forv € 83,92, C T(fv) is a non-empty open Gal(fv/Fv)- invariant
subset .

Suppose finally that H/ F is a finite Galois extension. Then there is a finite
Galois extension F'/F and a point P € T (F') such that:

o F'/F is linearly disjoint from H/F

e every place v of Sy splits completely in F' and if w is a prime of F' above
v, then P € Q, C T(F))

e every place v of S, is unramified in F' and if w is a prime of F' above
v,then P € Q, N T (F))

e if w is a prime of F' above some v € S3, then P € Q, N T (F))).

Let F* C F,E™ C E be the maximal totally real subfield respectively.

We apply Proposition 4.2 to the smooth geometrically connected variety T =
Res(gF SuffTW defined over Q. We take H = FyL = FyE.

We take §; = {oo}, $» = ¥ and §3 = {I1,I'}. For v € S;, we take Q, =
ResEF™" Tw (R), i.e. the whole set which is clearly open and non-empty since
each copy of Tw(C) are non -empty. For v € 3, there exists an algebraic

morphism p : T — ResE £ To and we define

Qo=1{t=@)e¢ ResgnguffTo(@l)
= [ %@ lu@) <0ve),

T EFsiesQ
suff —
Qo ={t = (t;) € Resg" To(Qp)
= J] To.@)lvt)>0vr)

T EFs'ffe.Qy

and we define ; = p_l (R1.0), 2 = p_l (£21,0). Both sets are clearly open,
non-empty and Galois invariant.
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Hence, we get a finite totally real Galois extension L’/Q with L’ linearly
disjoint with FoL over Q and a point r € To(L'EF*) (because L’ and
E F*'T are linearly disjoint over Q) such that if we denote L'E Fs'ff by F’
and L'E*T F*' by (F/)T then

e F' O EFisa CM Galois extension over F,
o X1 'VIM: =Flg,,

o 02 VIV = Symm" g G,

e v(t) < O for all primes v|l of F’,

e v(t) > O for all primes v|l’ of F’.

Now F'N Fav01d L EFSUffﬂ FoL N Favord EFsuffﬂ Favoid because L’
and FyL are linearly disjoint over Q. Moreover, E F**ffn F3 avoid = LM Fs*fn
Fon Fivold = yp psuif ny Favoid pecause L and Fy are hnearly disjoint over Q.
Furthermore, M Fsuft A Favord FSUHF@'N) ) FsuffFavmdFaV()ld ) Fav01d
FTE N F; avoid pecause F aVOldF avoid suff and Q(zw) 11near1y dlS]Oll’lt over
Q. Flnally Fsuff FN Favmd Fsuff F N Favoid Fav01d N Fav01d FN Favord
Favold N f avoid — () because Ff and F avoid 2 void are linearly disjoint over
Q. Therefore, we conclude that F’ > F**f and is linearly disjoint with anvo‘d
over Q, so we see by Proposition 4.1 that Symm”_lrEl G iyt and hence

—ker7 ; .
n—l Bl (¢ an“’o‘d) are lin-

Symm"~rg |G, 18 automorphic. Since F "and Q
early disjoint over (Q, we again have

o 7 (Gp) D SLy(Fy).
e Jdo e G —Gpyy) such that 7 g ; (o) is a scalar.

Note that by similar reasoning as the previous paragraph, we have that
F'n Fav01d Favord L'E Fquff NFyLN Fav01d Fav01d E Fsuff ) Favmd Fav01d
LMFsuff N Fy N FavordFavmd — MFsuff N FavordFavord — FsuffF(é-N) N
Fsuff Favord Fav01d N Fav01d Fav01d Fsuft FnN Favord Fav01d F and thus F’ is
linearly dlS]OlIlt with F?¥ over F as we wanted in the main theorem.

Let xo0 : Gg — Q@n)* be the Teichmuller lift of ¥,. We would
like to apply Theorem 612of [IJtop =10, p = Vy, ® X2_1 and
r(mr) = Symm"~ rE rlG .- Clearly p >~ y,(). For the residual repre-

sentation Symm” 7 E'|G,.» the two properties of g listed in 4.1 gives

that it is absolutely 1rredu01ble and condition (4) of Theorem 6.1.2 of [1]
is satisfied. Now apply Lemma 2.6 (1) to F = F, F; = F',l = [,
7 = 7Tgy and the fact that F’ and @kerr“/ are linearly disjoint over Q,
to see (Symm”_IFE,l/)(GF/(Cl,)) = (Symm”_IFEJ/)(GF(Q,)) is enormous.
Apply Lemma 2.6 (2) to the same situation (H C F @kerr’?’ﬂ cF Fivoid
F aVOisz"VOid, thus H C F aVOidFzalVOid since Fa°ld gpd FZZ‘VOid are both Galois
over Q, and then F’ linearly disjoint with F aVOidF;“’md over F is satisfied) to
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see that p is decomposed generic. Now V), ; is a regular ordinary represen-
tation for any place vy | I’ of F/ by Lemma 3.11 (3) (vy(¢) > 0) and thus
so is p. Our choice of [’ gives that Symmn_lrE,lr|G  1s ordinary as a G/,
representation for any /’-adic place v’ of F’. Hence we may apply Lemma
5.9 of [8] to see that Symm"_lrE,lr|G o 18 t'-ordinarily automorphic (since
Symm"_lrE,l/l(;F/ is clearly polarizable). Theorem 6.1.2 of [1] thus gives
that V), is automorphic as a G s representation.

Hence V) ; is automorphic as a G g/ representation. Now by the following
Lemma 4.3 (v;(t) < O for any v; | [), we see that V ; ® Xl_l is t-ordinarily
automorphic and hence 7 |g,, is ordinarily automorphic. This finishes the
proof of Theorem 1.1.

Lemma 4.3 We assume t € F' satisfy v(t) < 0 for any l-adic places v of F’
and V), ; is automorphic, then V) ; is t-ordinarily automorphic.

Proof Write V) ; = r;,(), then the only thing we need to show is that
7y is t-ordinary for any [-adic places v of F’. Lemma 3.12 shows that
WDV, ,|GF,) = WD(ry y(m)|g,, ) has a maximally nilpotent N and hence

is Steinberg. Now the main theorern of [17] shows that

1—-n

WDy, (m)lG )7 < 1" lrecr; (my| det [, ).

. But (n,0,0,...) is the largest among the order <, thus recg; (77, | det |T)
has a maximally nilpotent N and hence m,, is Steinberg.

Now we apply a variant of Lemma 5.6 of [8] to conclude my, is t-ordinary
from the fact that 7, is Steinberg. Namely, we show that the weight 0 condi-

tion is not needed. In the notation of Geraghty, we write 7, = Sp,, (¥, | - |l%n).
By Lemma 3.11, we have that the Hodge-Tate weight of V) ; has the shape

(A, Ar+1, ..., At +n — 1), we see that the weight of the automorphic rep-
resentation 7w must be of form (—A;), here in terms of Geraghty’s notation
it means that all A;; = —A. for a fixed . Because of this property and in

view of Lemma 5.2 of [8], it suffices to show that val; (¢! (Yry (det(a ("))))) =
val; ([ ], Flq, T(@)” 1) (for the other j € [0, n], it suffices to divide this
equality by n and multiply by j). Let ¢, be the central character of 7, then
the left hand side of the above is just Vall(t_l(qﬁn,v(wv))). Now we know
nn—1)

that r; ,(¢) = detr; () - chc2 , here the r;, on the left hand side is the
1-dimensional Langlands sending algebraic characters to [-aidc characters.
Thus r;,(¢=) is an [-adic character of Hodge-Tate weight (nA;)., and since
the image of r; (¢ ) are all /-adic units, we see that val; (! (P v (y))) =
vali([ 1., (@) ™) and we are done.

O
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Remark 4.4 Here is a follow-up on Remark 3.13. In the process of proof
above, we actually proved that Vy ; = r;,(;r) is t-ordinarily automorphic.
Hence by the main local-global compatibility result Theorem 5.5.1 or [1], we
see that V; ; as a Gy representation is ordinary for any /-adic places v of F.
This gives another way of proving the main result of [14]. However, as we
have commented, the attempt of deducing V, ; being t-ordinarily automor-
phic from the fact that it is automorphic and ordinary as /’-adic representation
seems invalid because to the best of the author’s knowledge, the local-global
compatibility result in this direction assumes the Galois representation to be
polarizable.

The author wants to thank Jack Thorne for pointing out this issue (together
with Remark 3.13) to him.

For the proof of Theorem 1.4, we know from above that ﬂ_IV[A]t =
Fl,, and V3  ® x| is t-ordinarily automorphic. Thus, in order to apply The-
orem 6.1.2 of [1], it suffices to verify that the conditions (3) and (4) of that

theorem holds for 7| ,,. Since F’ is linearly disjoint with FT ¢ pavoid gyer
F, all conditions except decomposed genericity follows from the correspond-
ing conditions of 7. Now F’ = L'EF* = FL'L Fs*f(¢x) is Galois over F.

And the Galois closure of e (g7) is linearly disjoint with F’ over Q because
this Galois closure is contained in F2V°4 and that L'LF Suff(g“N) N Favoid —
L,LFsuff(CN) NLFyN Favoid — LFSUff(CN) N Favoid — LFsu.ff(é-N) N FyN
Fav01d — Fsuff(é']v) N Fav01d — Fsuff(é-N) ) FsuffFavmd F2aV01d N Fav01d —
Fsuitn pavoid — . Now we may apply Lemma 7.1.7 of [1] to see the decom-
posed genericity. Hence we also finish the proof of Theorem 1.4.
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