
Principal Component Projection and Regression in
Nearly Linear Time through Asymmetric SVRG

Yujia Jin
Stanford Universty

yujiajin@stanford.edu

Aaron Sidford
Stanford Universty

sidford@stanford.edu

Abstract

Given a data matrix A∈Rn×d, principal component projection (PCP) and princi-
pal component regression (PCR), i.e. projection and regression restricted to the
top-eigenspace of A, are fundamental problems in machine learning, optimization,
and numerical analysis. In this paper we provide the first algorithms that solve
these problems in nearly linear time for fixed eigenvalue distribution and large n.
This improves upon previous methods which have superlinear running times when
both the number of top eigenvalues and inverse gap between eigenspaces is large.
We achieve our results by applying rational polynomial approximations to reduce
PCP and PCR to solving asymmetric linear systems which we solve by a variant of
SVRG. We corroborate these findings with preliminary empirical experiments.

1 Introduction

PCA is one of the most fundamental algorithmic tools for analyzing large data sets. Given a data
matrix A∈Rn×d and a parameter k the classic principal component analysis (PCA) problem asks to
compute the top k eigenvectors of A>A. This is a core computational task in machine learning and
often used for feature selection [1–3], data visualization [4, 5], and model compression [6].

However, as k becomes large, the running time of PCA can degrade. Even just writing down the output
takes Ω(kd) time and the performance of many methods degrade with k. This high-computational
cost for exploring large-cardinality top-eigenspaces has motivated researchers to consider prominent
tasks solved by PCA, for example principal component projection (PCP) which asks to project a
vector onto the top-k eigenspace, and principal component regression (PCR) which asks to solve
regression restricted to this top-k eigenspace (see Section 1.2).

Recent work [7, 8] showed that the dependence on k in solving PCP and PCR can be overcome
by instead depending on eigengap γ, defined as the ratio between the smallest eigenvalue in the
space projected onto and the largest eigenvalue of the space projected orthogonal to. These works
replace the typical poly(k)nnz(A) dependence in runtime with a poly(1/γ)nnz(A) (at the cost of
lower order terms), by reducing these problems to solving poly(1/γ) ridge-regression problems.
Unfortunately, for large-scale problems, as data-set sizes grow so too can k and 1/γ, yielding large
super-linear running times for all previously known methods (see Section 1.4). Consequently, this
leaves the following fundamental open problem:

Can we obtain nearly linear running times for solving PCP and PCR to high precision, i.e.
with running time Õ(nnz(A)) plus an additive term depending only on the eigenvalue distribution?

The main contribution of the paper is an affirmative answer to this question. We design randomized
algorithms that solve PCP and PCR with high probability in nearly linear time. Leveraging rational
polynomial approximations we reduce these problems to solving asymmetric linear systems, which

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

mailto:yujiajin@stanford.edu
mailto:sidford@stanford.edu

we solve by a technique we call asymmetric SVRG. Further, we provide experiments demonstrating
the efficacy of this method.

1.1 Approach

To obtain our results, critically we depart from the previous frameworks in Frostig et al. [7], Allen-
Zhu and Li [8] for solving PCP and PCR. These papers use polynomial approximations to the sign
function to reduce PCP and PCR to solving ridge regression. Their runtime is limited by the necessary
Ω(1/γ) degree for polynomial approximation of the sign function shown by Eremenko and Yuditskii
[9]. Consequently, to obtain nearly linear runtime, a new insight is required.

In our paper, we instead consider rational approximations to the sign function and show that these
efficiently reduce PCP and PCR to solving a particular class of squared linear systems. The closed
form expression for the best rational approximation to sign function was given by Zolotarev [10] and
has recently been proposed for matrix sign approximation [11]. The degree of such rational functions
is logarithmic in 1/γ, leading to much fewer linear systems to solve. While the squared systems
[(A>A−cI)2+µ2I]x=b,µ>0 induced by this rational approximation are computationally more
expensive to solve, as compared with simple ridge regression problems

[
A>A+µI

]
x = b,µ> 0,

interestingly, we show that these systems can still be solved in nearly linear time for sufficiently large
matrices. As a by-product of this analysis, we also obtain an efficient algorithm for leveraging linear
system solvers to apply the square-root of a positive semidefinite (PSD) matrix to a vector, where we
call a matrix M positive semidefinite and denote M�0 when ∀x,x>Mx≥0.

We believe the solver we develop for these squared systems is of independent interest. Our solver is a
variant of the stochastic variance-reduced gradient descent algorithm (SVRG) [12] modified to solve
asymmetric linear systems. Our iterative method can be viewed as an instance of the variance-reduced
algorithm for monotone operators discussed in Section 6 of Palaniappan and Bach [13], with a more
careful analysis of the error. We also combine this method with approximate proximal point [14] or
Catalyst [15] to obtain accelerated variants.

The conventional wisdom when solving asymmetric systems Mx=b that are not positive semidefinite
(PSD), i.e. M�0, is to instead solve its PSD counterpart M>Mx=M>b. However, this operation
can greatly impair the performance of stochastic methods, e.g. SVRG [12], SAG [16], etc. (See
Section 3.) The solver developed in this paper constitutes one of few known cases where transforming
it into asymmetric system solving enables better algorithm design and thus provides large savings
(see Corollary 1.) Ultimately, we believe this work on SVRG-based methods outside of convex
optimization as well as our improved PCP and PCR algorithms may find further impact.

1.2 The Problems

Here we formally define the PCP (Definition 1), PCR (Definition 2), Squared Ridge Regression
(Definition 3), and Square-root Computation (Definition 4) problems we consider throughout this
paper. Throughout, we let A∈Rn×d (n≥d) denote a data matrix where each row ai∈Rn is viewed
as a datapoint. Our algorithms typically manipulate the positive semidefinite (PSD) matrix A>A.
We denote the eigenvalues of A>A as λ1 ≥ λ2 ≥ ··· ≥ λd ≥ 0 and corresponding eigenvectors as
ν1,ν2,···,νd∈Rd, i.e. A>A=VΛV> with V

def
= (ν1,···,νd)> and Λ

def
= diag(λ1,···,λd).

Given eigenvalue threshold λ∈(0,λ1) we define Pλ
def
= (ν1,···,νk)(ν1,···,νk)> as a projection matrix

projecting any vector onto the top-k eigenvectors of A>A, i.e. span{ν1,ν2,···,νk}, where λk is the
minimum eigenvalue of A>A no smaller than λ, i.e. λk≥λ>λk+1. Without specification ‖·‖ is the
standard `2-norm of vector or matrix.

Given γ ∈ (0,1), the goal of a PCP algorithm is to project any given vector v =
∑
i∈[d]αiνi in a

desired way: mapping νi of A>A with eigenvalue λi in [λ(1+γ),∞) to itself, eigenvector νi with
eigenvalue λi in [0,λ(1−γ)] to 0, and any eigenvector νi with eigenvalue λi in between the gap to
anywhere between 0 and νi. Formally, we define the PCP as follows.

Definition 1 (Principal Component Projection). The principal component projection (PCP) of v∈Rd
at threshold λ is v∗λ = Pλv. Given threshold λ and eigengap γ, an algorithm APCP(v,ε,δ) is an

2

ε-approximate PCP algorithm if with probability 1−δ, its output satisfies following:

•‖P(1+γ)λ(APCP(v)−v)‖≤ε‖v‖; and ‖(I−P(1−γ)λ)APCP(v)‖≤ε‖v‖ (1)

•‖(P(1+γ)−P(1−γ)λ)(APCP(v)−v)‖≤‖(P(1+γ)−P(1−γ)λ)v‖+ε‖v‖

The goal of a PCR problem is to solve regression restricted to the particular eigenspace we are
projecting onto in PCP. The resulting solution should have no correlation with eigenvectors νi
corresponding to λi ≤ λ(1−γ), while being accurate for νi corresponding to eigenvalues above
λi≥ λ(1+γ). Also, it shouldn’t have too large correlation with νi corresponding to eigenvalues
between (λ(1−γ),λ(1+γ)). Formally, we define the PCR problem as follows.
Definition 2 (Principal Component Regression). The principal component regression (PCR) of an
arbitrary vector b ∈ Rn at threshold λ is x∗λ = minx∈Rd ‖APλx− b‖. Given threshold λ and
eigengap γ, an algorithm APCR(b,ε,δ) is an ε-approximate PCR algorithm if with probability 1−δ,
its output satisfies following:

‖(I−P(1−γ)λ)APCR(b,ε)‖≤ε‖b‖ and ‖AAPCR(b,ε)−b‖≤‖Ax∗(1+γ)λ−b‖+ε‖b‖ . (2)

We reduce PCP and PCR to solving squared linear systems. The solvers we develop for this squared
regression problem defined below we believe are of independent interest.
Definition 3 (Squared Ridge Regression Solver). Given c∈ [0,λ1], v∈Rd, we consider a squared
ridge regression problem where exact solution is x∗ = ((A>A − cI)2 + µ2I)−1v. We call an
algorithm RidgeSquare(A,c,µ2,v,ε,δ) an ε-approximate squared ridge regression solver if with
probability 1−δ it returns a solution x̃ satisfying ‖x̃−x∗‖≤ε‖v‖.

Using a similar idea of rational polynomial approximation, we also examine the problem of M1/2v
for arbitrarily given PSD matrix M to solving PSD linear systems approximately.
Definition 4 (Square-root Computation). Given a PSD matrix M∈Rn×n such that µI�M�λI
and v ∈Rn, an algorithm SquareRoot(M,v,ε,δ) is an ε-approximate square-root solver if with
probability 1−δ it returns a solution x satisfying ‖x−M1/2v‖≤ε‖M1/2v‖.

1.3 Our Results

Here we present the main results of our paper, all proved in Appendix D. For data matrix
A ∈ Rn×d, our running times are presented in terms of the following quantities: Input spar-
sity nnz(A)

def
= number of nonzero entries in A; Frobenius norm ‖A‖2F

def
= Tr(A>A); stable rank

sr(A)
def
= ‖A‖2F/‖A‖22 =‖A‖2F/λ1; condition number of top-eigenspace: κdef

= λ1/λ. When present-
ing running times we use Õ to hide polylogarithmic factors in the input parameters λ1,γ,v,b, error
rates ε, and success probability δ.

For A∈Rn×d (n≥d), v∈Rd, b∈Rn, without loss of generality we assume λ1∈ [1/2,1]1. Given
threshold λ∈(0,λ1) and eigengap γ∈(0,2/3], the main results of this paper are the following new
running times for solving these problems.
Theorem 1 (Principal Component Projection). For any ε∈ (0,1), there is an ε-approximate PCP
algorithm (see Definition 1) ISPCP(A,v,λ,γ,ε,δ) specified in Algorithm 5 with runtime

Õ
(

nnz(A)+
√

nnz(A)·d·sr(A)κ/γ
)
.

Theorem 2 (Principal Component Regression). For any ε∈ (0,1), there is an ε-approximate PCR
algorithm (see Definition 2) ISPCR(A,b,λ,γ,ε,δ) specified in Algorithm 6 with runtime

Õ
(

nnz(A)+
√

nnz(A)·d·sr(A)κ/γ
)
.

We achieve these results by introducing a technique we call asymmetric SVRG to solve squared
systems [(A>A−cI)2+µ2I]x=v with c∈ [0,λ1]. The resulting algorithm is closely related to the
SVRG algorithm for monotone operators in Palaniappan and Bach [13], but involves a more fine-
grained error analysis. This analysis coupled with approximate proximal point [14] or Catalyst [15]
yields the following result (see Section 3 for more details).

1This can be achieved by getting a constant approximating overestimate λ̃1 of A>A’s top eigenvector λ1

through power method in Õ(nnz(A)) time, and consider A←A/
√
λ̃1,λ←λ/λ̃1,b←b/

√
λ̃1 instead.

3

Theorem 3 (Squared Solver). For any ε∈(0,1), there is an ε-approximate squared ridge regression
solver (see Definition 3) using AsySVRG(M,v̂,z0,ε‖v‖,δ) that runs in time

Õ
(

nnz(A)+
√

nnz(A)d·sr(A)λ1/µ
)
.

When the eigenvalues of A>A−cI are bounded away from 0, such a solver can be utilized to solve
non-PSD linear systems in form (A>A− cI)x = v through preconditioning and considering the
corresponding problem (A>A−cI)2x=(A>A−cI)v (see Corollary 1).

Corollary 1. Given c ∈ [0, λ1], and a non-PSD system (A>A − cI)x = v and an initial
point x0, for arbitrary c satisfying (A>A − cI)2 � µ2I, µ > 0, there is an algorithm returns
with probability 1 − δ a solution x̃ such that ‖x̃ − (A>A − cI)−1v‖ ≤ ε‖v‖, within runtime
Õ
(
nnz(A)+

√
nnz(A)d·sr(A)λ1/µ

)
.

Another byproduct of the rational approximation used in the paper is a nearly-linear runtime for
computing an ε-approximate square-root of PSD matrix M�0 applied to an arbitrary vector.
Theorem 4 (Square-root Computation). For any ε ∈ (0,1), given µI �M � λI, there is an ε-
approximate square-root solver (see Definition 4) SquareRoot(M,v,ε,δ) that runs in time

Õ(nnz(M)+T)

where T is the runtime for solving (M+κI)x=v for arbitrary v∈Rn and κ∈ [Ω̃(µ),Õ(λ)].

1.4 Comparison to Previous Work

PCP and PCR: The starting point for our paper is the work of [7], which provided the first nearly
linear time algorithm for the problem with constant eigengap by reducing the problem to finding
the best polynomial approximation to sign function and solving a sequence of regression problems.
It was improved by [8] and then [17]. These algorithms were first to achieve input sparsity for
eigenspaces of any non-trivial size, but with super-linear running times whenever the eigenvalue-gap
is super-constant. Departing from their polynomial approximation, we use rational function as
approximant and reduce to different subproblems to get new algorithms with better running time
guarantee in some regime. See Table 1 for a comparison between those results and ours.

Table 1: Comparison with previous PCP/PCR runtimes. (Notations same as in Section 1.3.)

Algorithm Runtime
FMMS16 [7] Õ

(
1
γ2 (nnz(A)+d·sr(A)κ)

)
AL17 [8], MMS18 [17] Õ

(
1
γ (nnz(A)+d·sr(A)κ)

)
Theorems 1 and 2 Õ

(
nnz(A)+

√
nnz(A)·d·sr(A)κ/γ

)
Asymmetric SVRG and Iterative Methods for Solving Linear Systems: Variance reduction or
varianced reduced iterative methods (e.g. SVRG [12] is a powerful tool for improving convergence
of stochastic methods. There has been work that used SVRG to develop primal-dual algorithms
for solving saddle-point problems and extended it to monotone operators [13]. Our asymmetric
SVRG solver can be viewed as an instance of their algorithm. We obtain improved running time
analysis by performing a more fine-grained analysis exploiting problem structure. Especially, we
provide Section 1.4 to comparing the effectiveness of our asymmetric SVRG solver with some classic
optimization methods for solving non-PSD system (A>A−cI)x = v satisfying (A>A−cI)2 �
µ2I,µ>0 (full discussion in Section 3 and Appendix C.4).

Table 2: Comparison for runtimes of solving non-PSD system (A>A−cI)x=v.

Algorithm Runtime
AGD applied to squared counterpart Õ(nnz(A)λ1/µ)

SVRG applied to squared counterpart Õ(nnz(A)+nnz(A)3/4d1/4sr(A)1/2λ1/µ)

Asymmetric SVRG (Corollary 1) Õ
(
nnz(A)+

√
nnz(A)d·sr(A)λ1/µ

)
4

Fast Matrix Multiplication: One can also use fast-matrix multiplication (FMM) to possibly speed
up all runtimes for PCA, PCR, and PCP, mainly by computing A>A in O(ndω) time and SVD
of this matrix in an additional O(dω) time [18] where ω< 2.379 [19] is the matrix multiplication
constant. Given the well-known practicality concerns of methods using fast matrix multiplication, we
focus much of our comparison on methods that do not use FMM.

1.5 Paper Organization

The remainder of the paper is organized as follows. In Section 2, we reduce the PCP problem2 to
matrix sign approximation and study the property of Zolotarev rational function used in approximation.
In Section 3, we develop the asymmetric and squared linear system solvers using variance reduction
and show the theoretical guarantee to prove Theorem 3, and correspondingly Corollary 1. In Section 4,
we conduct experiments and compare with previous methods to show efficacy of proposed algorithms.
We conclude the paper in Section 5.

2 PCP through Matrix Sign Approximation

Here we provide our reductions from PCP to sign function approximation. We consider the rational
approximation r(x) found by Zolotarev [10] and study its properties for efficient (Theorem 5) and
stable (Lemma 5) algorithm design to reduce the problem to solving squared ridge regressions.

Throughout the section, we denote sign function as sgn(x) :R→R, where sgn(x) = 1 whenever
x> 0, sgn(x) =−1 whenever x< 0, and sgn(0) = 0. Pk

def
= {akxk+ ···+a1x+a0|ak 6= 0} denote

class of degree-k polynomials. Rm,n
def
= {rm,n|rm,n = pm/qn,pm ∈Pm, qn ∈Pn} denote class of

(m,n)-degree (or referred to as max{m,n}-degree) rational functions.

For the PCP problem (see Definition 1), we need an efficient algorithm that can approximately apply
Pλ to any given vector v∈Rd. Consider the shifted matrix A>A−λI so that its eigenvalues are
shifted to [−1,1] with λ mapping to 0. Previous work has shown [7, 8] solving PCP can be reduced
to finding f(x) that approximates sign function sgn(x) on [−1,1], formally through the following
reduction.
Lemma 1 (Reduction: from PCP to Matrix Sign Approximation). Given a function f(x) that
2ε-approximates sgn(x):

|f(x)−sgn(x)|≤2ε,∀|x|∈ [λγ,1] and |f(x)|≤1,∀x∈ [−1,1], (3)

then ṽ= 1
2

(
f(A>A−λI)+I

)
v is an ε-approximate PCP solution satisfying (1).

However, instead of approximating sgn(x) with polynomials as in previous work [7, 8], where the
optimal degree for achieving condition |f(x)−sgn(x)|≤2ε,∀|x|∈ [γ,1] is proved to be Õ(1/γ) in [9],
we use Zolotarev rational function for approximation. This brings down the degree to Õ(log(1/λγ)),
leading to the nearly input sparsity runtime improvement in the paper.

Formally, Zolotarev rationals are defined as the optimal solution rγk(x)=x·p(x2)/q(x2)∈R2k+1,2k

for the optimization problem:

max
p,q∈Pk

min
γ≤x≤1

x
p(x2)

q(x2)
s.t. x

p(x2)

q(x2)
≤1,∀x∈ [0,1] (4)

Zolotarev [10] showed this optimization problem (up to scaling) is equivalent to solving

min
r∈R2k+1,2k

max
|x|∈[γ,1]

|sgn(x)−r(x)| .

Further Zolotarev [11] showed that the analytic formula of rγk is given by

rγk(x)=Cx
∏
i∈[k]

x2+c2i
x2+c2i−1

with ci
def
= γ2

sn2(iK′

2k+1 ;γ′)

cn2(iK′

2k+1 ;γ′)
,i∈ [2k]. (5)

and C is the rescaling parameter to make sure 1−rγk(γ) =−(1−rγk(1)). Note all coefficients are
dependent of degree k and range γ. The explicit formulas for ci,K ′,γ′ are shown in Appendix B.1.

2We refer reader to Appendix D.2 for the known reduction from PCR to PCP.

5

-1 -0.5 0 0.5 1

-1

0

1

polynomial

chebyshev

rational

(a) γ=0.1

-1 -0.5 0 0.5 1

-1

0

1

polynomial

chebyshev

rational

(b) γ=0.05

-1 -0.5 0 0.5 1

-1

0

1

polynomial

chebyshev

rational

(c) γ=0.01

Figure 1: same degree = 21, different γ

This rational polynomial approximates sgn(x) on range |x|∈ [γ,1] with error decaying exponentially
with degree, as formally characterized by the following theorem.
Theorem 5 (Rational Approximation Error). For any given ε∈(0,1), when k≥Ω(log(1/ε)log(1/γ)),
it holds that max|x|∈[γ,1]|sgn(x)−rγk(x)|≤2ε.

As a quick illustration, Fig. 1 shows a comparison between the approximation errors of Zolotarev
rational function, polynomial used in [7] and chebyshev polynomial used in [8] with same degree.

Treating rλγk with k≥Ω(log(1/ε)log(1/λγ)) as the desired f in Lemma 1, it suffices to compute

rλγk ((A>A−λI))v=C(A>A−λI)

k∏
i=1

(A>A−λI)2+c2iI

(A>A−λI)2+c2i−1I
v.

To compute this formula approximately, we need to solve squared linear systems of the form
((A>A−λI)2+c2i−1I)x=v, the hardness of which is determined by the size of c2i−1(>0). The
larger c2i−1 is, the more positive-definite (PD) the system becomes, and the faster we can solve it.
The following lemma shows that, the rλγk we need to use has coefficients ci = Ω̃(1/λ2γ2) when
k=Θ(log(1/ε)log(1/λγ)).

Lemma 2 (Bounding ci). For rλγk , coefficients ci are nondecreasing in i, ∀i∈ [2k]. Also, ∃ some
constant 0<β2,β3<∞, such that c1≥β2 λ

2γ2

k2 , c2k≤β3k2.

Given a squared ridge regression solver RidgeSquare(A,λ,c2i−1,v,ε,δ) (See Section 3), we can
get an ε-approximate PCP algorithm ISPCP(A,v,λ,γ,ε,δ) shown in Algorithm 5 and its theoretical
guarantee in Theorem 1. Using the known reduction [7, 8] from PCP to PCR solver, this also gives
results in Theorem 2. We refer readers to Appendix D for parameter choice and corresponding proofs.

Algorithm 1: ISPCP(A,v,λ,γ,ε,δ)

Input: A data matrix, v projecting vector, λ threshold, γ eigengap, ε accuracy, δ probability.
Parameter: degree k (Theorem 5), coefficients {ci}2ki=1,C (Eqn. (5)), accuracy ε1 (Appendix D)
Output: A vector ṽ that solves PCP ε-approximately.

1 for i←1 to k do
2 ṽ←(A>A−λI)2ṽ+c2iṽ
3 ṽ←RidgeSquare(A,λ,c2i−1,ṽ,ε1,δ/k)

4 ṽ←C(A>A−λI)ṽ

5 ṽ← 1
2 (v+ṽ)

3 SVRG for Solving Asymmetric / Squared Systems

In this section, we reduce solving squared systems into solving asymmetric systems (Lemma 3) and
develop SVRG-type solvers (Algorithm 2) for them. We study its theoretical guarantees in both
general (Theorems 6 and 7) and our specific case (Theorem 8). We defer all proofs to Appendix C.

In Section 2, we get low-degree rational function approximation at the cost of more complicated sub-
problems to solve. Indeed, instead of solving ridge-regression-type subproblems (A>A+λI)x=v

6

as in previous work [7, 8], we need to solve squared systems in the following form:

[(A>A−cI)2+µ2I]x=v, with A∈Rn×d,v∈Rd,µ>0,c∈ [0,λ1]. (6)

When the squared system is ill-conditioned (i.e. when λ1/µ�0), previous state-of-the-art methods
can have fairly large running times. As shown in Section 1.4 and proved in Appendix C.4, Accel-
erated Gradient Descent [20] applied to solving system

(
(A>A−cI)2+µ2I

)
x=v gives a runtime

Õ(nnz(A)λ1/µ), which is not nearly linear in nnz(A). Applying the standard SVRG [12] technique
to the same system leads to a runtime Õ(nnz(A)+d · sr2(A)λ41/µ

4), where sr2(A)λ41/µ
4 comes

from the high variance in sampling aia
>
i aja

>
j from (A>A)2 independently.

Thus rather than working with the squared system directly, we propose to consider (equivalently) a
larger dimensional space where we develop estimators with lower variance at the cost of asymmetry,
formally in the reduction below.
Lemma 3 (Reducing Squared Systems to Asymmetric Systems). Define z∗ as the solution to the
following asymmetric linear system:(

I − 1
µ (A>A−cI)

1
µ (A>A−cI) I

)
z=

(
0

v/µ2

)
. (7)

If we are given a solver that returns with probability 1−δ a solution z̃ satisfying ‖z̃−z∗‖2≤ε within
runtime T (ε,δ), then we can use it to get an ε-approximate squared ridge regression solver (see
Definition 3) with runtime T (ε‖v‖,δ) .

3.1 SVRG for General Asymmetric Linear System Solving

The general goal for this section is to solve the general asymmetric system with PSD symmetric part,
formally defined as:

solve Mz= v̂ with v̂∈Ra, M∈Ra×a, M=
∑
i∈[n]

Mi, ‖Mi‖≤Li,
1

2
(M>+M).�µI (8)

For simplicity, we denote Tmv(Mi) as the cost of the matrix-vector product of Mix for any x and
T =maxi∈[n]Tmv(Mi). All results in this subsection can be viewed as a variant of Palaniappan and
Bach [13] and can be recovered by their slightly different algorithm which used proximal methods.

Using the idea of variance-reduced sampling [12]: At step t, we sample it ∈ [n with probability
pit =Lit/(

∑
i∈[n]Li) independently and conduct update

zt+1 :=zt−
η

pit

(
Mitzt−Mitz0+pit(Mz0−v̂)

)
. (9)

Algorithm 2: AsySVRG(M,v̂,z0,ε,δ)

Input: M∈Ra×a, v̂∈Ra, z0∈Ra,ε desired accuracy, δ probability parameter.
Output: z

(Q+1)
0 ∈Ra.

1 Set η=µ/4(
∑
i∈[n]Li)

2,T =d(
∑
i∈[n]Li)

2/µ2e, pi=Li/(
∑
i∈[n]Li),i∈ [n] unless specified

2 for q=1 to Q=Θ(log(1/εδ)) do
3 for t←1 to T do
4 Sample it∼ [n] according to {pi}ni=1

5 z
(q)
t ←z

(q)
t−1−η/pit(Mitz

(q)
t−1−Mitz

(q)
0 +pit(Mz

(q)
0 −v̂))

6 z
(q+1)
0 = 1

T

∑T
t=1z

(q)
t

The full pseudocode is shown in Algorithm 2. It has the following theoretical guarantee.
Theorem 6 (General Asymmetric SVRG Solver). For asymmetric system Mz= v̂ in (8), there is a
solver AsySVRG(M,v̂,z0,ε,δ) as specified in Algorithm 2 that returns with high probability ≥1−δ a
vector z̃ such that ‖z̃−M−1v̂‖≤ε, within runtime Õ(nnz(M)+T (

∑
i∈[n]Li)

2/µ2).

Using approximate proximal point [14] or Catalyst [15], when nnz(M)≤T (
∑
i∈[n]Li)

2/µ2, we can
further improve this running time to the following:

7

Theorem 7 (Accelerated Asymmetric SVRG Solver). Under (8), when nnz(M)≤T (
∑
i∈[n]Li)

2/µ2,
the algorithm can be further accelerated to return with high probability ≥ 1− δ an approximate
solution z̃ satisfying ‖z̃−M−1v̂‖≤ε, within runtime Õ

(√
nnz(M)T (

∑
i∈[n]Li)/µ

)
.

3.2 Asymmetric Linear System Solving for Squared System Solver

From Lemma 3, the asymmetric linear system we actually need to solve is Mz= v̂, where

M=

(
I − 1

µ (A>A−cI)
1
µ (A>A−cI) I

)
and v̂=

(
0,v/µ2

)>
. (10)

Through a more fine-grained analysis shown in Appendix C.2, AsySVRG(M,v̂,z0,ε,δ) with particular
choices of Mi,{pi}i∈[n], η, T can have a better runtime guarantee and be accelerated using similar
idea as in the general case. This is stated formally in the following theorem.
Theorem 8 (Particular Asymmetric SVRG Solver). Set pi = ‖ai‖2/‖A‖2F, η = µ2/2λ1‖A‖2F,
T =d2‖A‖2Fλ1/µ2e and

Mi :=

 ‖ai‖2
‖A‖2F

I − 1
µ (aia

>
i −c

‖ai‖2
‖A‖2F

I)

1
µ (aia

>
i −c

‖ai‖2
‖A‖2F

)I ‖ai‖2
‖A‖2F

I

, ∀i∈ [n].

Then AsySVRG(M, v̂,z0, ε, δ) as specified in Algorithm 2 returns with probability ≥ 1− δ an ε-
approximate solution z̃ satisfying ‖z̃−M−1v̂‖ ≤ ε within runtime Õ

(
nnz(A)+d · sr(A)λ21/µ

2
)
.

An accelerated variant of it improves the runtime to Õ
(
λ1
√

nnz(A)d·sr(A)/µ
)

when nnz(A)≤
d·sr(A)λ21/µ

2.

Picking c = λ, µ2 = c2i−1 = Ω̃(1/λ2γ2) (see Lemma 5) in (10), we know under minimal
trasformations AsySVRG(M, v̂, z0, ε‖v‖, δ) is equivalent to an ε-approximate squared solver
RidgeSquare(A,λ,c2i−1,v, ε,δ), with worst-case runtime Õ

(
nnz(A) + d · sr(A)κ

2

γ2

)
. (See Ap-

pendix C.3 and Algorithm 4 for details.)

4 Numerical Experiments

We evaluate our proposed algorithms following the settings in Frostig et al. [7], Allen-Zhu and Li
[8]. As the runtimes in Theorems 1 and 2 show improvement compared with the ones in previous
work [7, 8] when nnz(A)/γ�d2κ2/γ2, we pick the data matrix A such that κ=Θ(1) and n� d

γ to
corroborate the theoretical results.

Since experiments in several papers [7, 8] have studied the reduction from PCR to PCP (see
Lemma 13), here we only show results regarding solving PCP problems. In all figures below,
the y-axis denotes the relative error measured in ‖APCP(v)−Pλv‖/‖Pλv‖ and x-axis denotes the
total number of vector-vector products to achieve corresponding accuracy.

Datasets. Similar to that in previous work [7, 8], we set λ = 0.5,n = 2000,d = 50 and form a
matrix A=UΛ1/2V∈R2000×50. Here, U and V are random orthonormal matrices, and Σ contains
randomly chosen singular values σi=

√
λi. Referring to [0,λ(1−γ)]∪[λ(1+γ),1] as the away-from-

λ region, and λ(1−γ)·[0.9,1]∪λ(1+γ)·[1,1.1] as the close-to-λ region, we generate λi differently
to simulate the following three different cases:
i. Eigengap-Uniform Case: generate all λi uniformly in the away-from-λ region.
ii. Eigengap-Skewed Case: generate half the λi uniformly in the away-from-λ and half uniformly in
the close-to-λ regions.
iii. No-Eigengap-Skewed Case: uniformly generate half in [0,1], and half in the close-to-λ region.

Algorithms. We implemented the following algorithms and compared them in the above settings:
1. polynomial: the PC−Proj algorithm in Frostig et al. [7].
2. chebyshev: the QuickPCP algorithm in Allen-Zhu and Li [8].
3. lanczos: the algorithm using Lanczos method discussed in Section 8.1 of Musco et al. [17].
4. rational: the ISPCP algorithm (see Algorithm 5) proposed in our paper.
5. rlanczos: the algorithm using rational Lanczos method [21] combined with ISPCP. (See Ap-
pendix E.1 for a more detailed discussion.)

8

10
0

10
5

vector product / n

10
-4

10
-3

10
-2

10
-1

10
0

re
la

ti
v
e

 e
rr

o
r

polynomial

chebyshev

lanzcos

rational

rlanczos

slanczos

(a) Eigengap-Uniform Case

10
0

10
5

vector product / n

10
-4

10
-3

10
-2

10
-1

10
0

re
la

ti
v
e

 e
rr

o
r

polynomial

chebyshev

lanzcos

rational

rlanczos

slanczos

(b) Eigengap-Skewed Case

10
0

10
5

vector product / n

10
-4

10
-3

10
-2

10
-1

10
0

re
la

ti
v
e

 e
rr

o
r

polynomial

chebyshev

lanzcos

rational

rlanczos

slanczos

(c) No-Eigengap-Skewed Case

Figure 2: Synthetic Data: n=2000, d=50, λ=0.5, γ=0.05.

10
0

10
5

vector product / n

10
-4

10
-3

10
-2

10
-1

10
0

re
la

ti
v
e

 e
rr

o
r

polynomial

chebyshev

lanzcos

rational

rlanczos

slanczos

(a) n=5000

10
0

10
5

vector product / n

10
-4

10
-3

10
-2

10
-1

10
0

re
la

ti
v
e

 e
rr

o
r

polynomial

chebyshev

lanzcos

rational

rlanczos

slanczos

(b) n=10000

10
0

10
5

vector product / n

10
-4

10
-3

10
-2

10
-1

10
0

re
la

ti
v
e

 e
rr

o
r

polynomial

chebyshev

lanzcos

rational

rlanczos

slanczos

(c) n=20000

Figure 3: Synthetic Data: Changing n, d=50, λ=0.5, γ=0.05. No-Eigengap-Skewed Case.

6. slanczos: the algorithm using Lanczos method [17] with changed search space from form f(x−λx+λ)

into f((x−λ)(x+λ)
(x−λ)2+γ(x+λ)2) for approximation (f polynomial, x←A>A).

We remark that 1-3 are algorithms in previous work; 4 is an exact implementation of ISPCP proposed
in the paper; 5, 6 are variants of ISPCP combined with Lanczos method, both using the squared
system solver. Algorithms 5, 6 are explained in greater detail in Appendix E.

There are several observations from the experiments:
• For different eigenvalue distributions, (4-6) in general outperform all existing methods (1-3) in
most accuracy regime in terms of number of vector products as shown in Fig. 2.
• In no-eigengap case, all methods get affected in precision. This is due to the projection error of
eigenvalues very close to eigengap, which simple don’t exist in Eigengap cases. Nevertheless, (6) is
still the most accurate one with least computation cost, as shown in Fig. 2.
• When n gets larger, (4,5) tends to enjoy similar performance, outperforming all other methods
including (6), as shown in Fig. 3. This aligns with theory that runtime of (4,5) is dominated by
nnz(A) while runtime of (6) is dominated by nnz(A)/

√
γ (see Theorem 12 for theoretical analysis

of slanczos), demonstrating the power of nearly-linear runtime of ISPCP proposed.

5 Conclusion

In this paper we provided a new linear algebraic primitive, asymmetric SVRG for solving squared
ridge regression problems, and showed that it lead to nearly-linear-time algorithms for PCP and PCR.
Beyond the direct running time improvements, this work shows that running time improvements
can be achieved for fundamental linear-algebraic problems by leveraging stronger subroutines than
standard ridge regression. The improvements we obtain for PCP, demonstrated theoretically and
empirically, we hope are just the first instance of a more general approach for improving the running
time for solving large-scale machine learning problems.

Acknowledgements This research was partially supported by NSF CAREER Award CCF-1844855
and Stanford Graduate Fellowship. We would also like to thank the anonymous reviewers who helped
improve the completeness and readability of this paper by providing many helpful comments.

9

References

[1] Arnaz Malhi and Robert X Gao. Pca-based feature selection scheme for machine defect classification.
IEEE Transactions on Instrumentation and Measurement, 53(6):1517–1525, 2004.

[2] Fengxi Song, Zhongwei Guo, and Dayong Mei. Feature selection using principal component analysis. In
2010 international conference on system science, engineering design and manufacturing informatization,
volume 1, pages 27–30. IEEE, 2010.

[3] Cláudia Pascoal, M Rosario De Oliveira, Rui Valadas, Peter Filzmoser, Paulo Salvador, and António
Pacheco. Robust feature selection and robust pca for internet traffic anomaly detection. In 2012 Proceedings
IEEE INFOCOM, pages 1755–1763. IEEE, 2012.

[4] Tomasz Niedoba. Multi-parameter data visualization by means of principal component analysis (pca) in
qualitative evaluation of various coal types. physicochemical problems of Mineral processing, 50, 2014.

[5] Tauno Metsalu and Jaak Vilo. Clustvis: a web tool for visualizing clustering of multivariate data using
principal component analysis and heatmap. Nucleic acids research, 43(W1):W566–W570, 2015.

[6] Yihang Yin, Fengzheng Liu, Xiang Zhou, and Quanzhong Li. An efficient data compression model
based on spatial clustering and principal component analysis in wireless sensor networks. Sensors, 15(8):
19443–19465, 2015.

[7] Roy Frostig, Cameron Musco, Christopher Musco, and Aaron Sidford. Principal component projection
without principal component analysis. In ICML, pages 2349–2357, 2016.

[8] Zeyuan Allen-Zhu and Yuanzhi Li. Faster principal component regression and stable matrix chebyshev
approximation. In Proceedings of the 34th International Conference on Machine Learning-Volume 70,
pages 107–115. JMLR. org, 2017.

[9] Alexandre Eremenko and Peter Yuditskii. Uniform approximation of sgn x by polynomials and entire
functions. Journal d’Analyse Mathématique, 101(1):313–324, 2007.

[10] EI Zolotarev. Application of elliptic functions to questions of functions deviating least and most from zero.
Zap. Imp. Akad. Nauk. St. Petersburg, 30(5):1–59, 1877.

[11] Yuji Nakatsukasa and Roland W Freund. Computing fundamental matrix decompositions accurately via the
matrix sign function in two iterations: The power of zolotarev’s functions. SIAM Review, 58(3):461–493,
2016.

[12] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance reduction.
In Advances in neural information processing systems, pages 315–323, 2013.

[13] Balamurugan Palaniappan and Francis Bach. Stochastic variance reduction methods for saddle-point
problems. In Advances in Neural Information Processing Systems, pages 1416–1424, 2016.

[14] Roy Frostig, Rong Ge, Sham Kakade, and Aaron Sidford. Un-regularizing: approximate proximal point
and faster stochastic algorithms for empirical risk minimization. In International Conference on Machine
Learning, pages 2540–2548, 2015.

[15] Hongzhou Lin, Julien Mairal, and Zaid Harchaoui. A universal catalyst for first-order optimization. In
Advances in Neural Information Processing Systems, pages 3384–3392, 2015.

[16] Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing finite sums with the stochastic average
gradient. Mathematical Programming, 162(1-2):83–112, 2017.

[17] Cameron Musco, Christopher Musco, and Aaron Sidford. Stability of the lanczos method for matrix
function approximation. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 1605–1624. Society for Industrial and Applied Mathematics, 2018.

[18] Victor Y. Pan and Zhao Q. Chen. The complexity of the matrix eigenproblem. In Proceedings of the
Thirty-first Annual ACM Symposium on Theory of Computing, STOC ’99, pages 507–516, New York, NY,
USA, 1999. ACM. ISBN 1-58113-067-8. doi: 10.1145/301250.301389. URL http://doi.acm.org/
10.1145/301250.301389.

[19] Virginia Vassilevska Williams. Multiplying matrices faster than coppersmith-winograd. In Proceedings of
the 44th Symposium on Theory of Computing Conference, STOC 2012, New York, NY, USA, May 19 - 22,
2012, pages 887–898, 2012.

10

http://doi.acm.org/10.1145/301250.301389
http://doi.acm.org/10.1145/301250.301389

[20] Y. E. NESTEROV. A method for solving the convex programming problem with convergence rate O(1/k2).
Dokl. Akad. Nauk SSSR, 269:543–547, 1983.

[21] Kyle Gallivan, G Grimme, and Paul Van Dooren. A rational lanczos algorithm for model reduction.
Numerical Algorithms, 12(1):33–63, 1996.

[22] Shai Shalev-Shwartz and Tong Zhang. Accelerated proximal stochastic dual coordinate ascent for regular-
ized loss minimization. In International Conference on Machine Learning, pages 64–72, 2014.

[23] Zeyuan Allen-Zhu. Katyusha: The first direct acceleration of stochastic gradient methods. The Journal of
Machine Learning Research, 18(1):8194–8244, 2017.

[24] Yurii Nesterov and Sebastian U Stich. Efficiency of the accelerated coordinate descent method on structured
optimization problems. SIAM Journal on Optimization, 27(1):110–123, 2017.

[25] Naman Agarwal, Sham Kakade, Rahul Kidambi, Yin Tat Lee, Praneeth Netrapalli, and Aaron Sidford.
Leverage score sampling for faster accelerated regression and erm. arXiv preprint arXiv:1711.08426, 2017.

[26] Andrei Aleksandrovich Gonchar. Zolotarev problems connected with rational functions. Matematicheskii
Sbornik, 120(4):640–654, 1969.

[27] Frank Olver, Daniel Lozier, Ronald Boisvert, and Charles Clark. Nist handbook of mathematical functions.
01 2010.

[28] Milton Abramowitz and Irene A Stegun. Handbook of mathematical functions: with formulas, graphs, and
mathematical tables, volume 55. Courier Corporation, 1965.

[29] Sébastien Bubeck, Yin Tat Lee, and Mohit Singh. A geometric alternative to nesterov’s accelerated gradient
descent. arXiv preprint arXiv:1506.08187, 2015.

[30] Yurii Nesterov. Lectures on convex optimization, volume 137. Springer, 2018.

11

	Introduction
	Approach
	The Problems
	Our Results
	Comparison to Previous Work
	Paper Organization

	PCP through Matrix Sign Approximation
	SVRG for Solving Asymmetric / Squared Systems
	SVRG for General Asymmetric Linear System Solving
	Asymmetric Linear System Solving for Squared System Solver

	Numerical Experiments
	Conclusion

