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Universal critical behavior in the ferromagnetic superconductor Eu(Fe0.75 Ru0.25)2As2
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The study of universal critical behavior is a crucial issue in a continuous phase transition, which groups
various critical phenomena into universality classes for revealing microscopic electronic behaviors. The
understanding of the nature of magnetism in Eu-based ferromagnetic superconductors is largely impeded by
the infeasibility of performing inelastic neutron scattering measurements to deduce the microscopic magnetic
behaviors and the effects on the superconductivity, due to the significant neutron absorption effect of natural
152Eu and unavailability of large single crystals. However, by systematically combining the neutron diffraction
experiment, the first-principles calculations, and the quantum Monte Carlo simulations, we have obtained a
perfectly consistent universal critical exponent value of β = 0.385(13) experimentally and theoretically for
Eu(Fe0.75Ru0.25)2As2, from which the magnetism in the Eu-based ferromagnetic superconductors is identified
as the universal class of a three-dimensional anisotropic quantum Heisenberg model with long-range magnetic
exchange coupling. This systematic study points out a suitable microscopic theoretical model for describing the
nature of magnetism in the intriguing Eu-based ferromagnetic superconductors.
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Introduction. The continuous phase transition associated
symmetry breaking is one of the two central themes in Lan-
dau’s theory in condensed matter physics [1]. An order pa-
rameter is introduced to well describe the symmetry changing
across the boundaries in a phase transition. For instance, the
order parameter is the net magnetization in a ferromagnetic
system or the energy gap for Cooper pairs’ formation in a
superconductor undergoing a phase transition. Furthermore,
the universal critical exponents and scaling functions are used
to describe the behavior of physical quantities near continuous
phase transitions, which are independent of the microscopic
details of the systems, but only of some of their global
properties, such as the space dimensionality, the range of
interaction, and the symmetry of the order parameter. Un-
veiling the universal critical exponents of phase transitions in
unconventional superconductors associated with the magnetic
phase transition may shed light on the study of spin fluctuation
effects on the superconducting mechanism.
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In general, the ferromagnetism is incompatible with su-
perconductivity for singlet pairing superconductors, since
the superconductivity is suppressed or quenched whenever
ferromagnetism appears [2]. The intriguing coexistence of
superconductivity and ferromagnetism in the Eu-based iron
pnictides upon chemical doping or applying external pressure
attracted enormous attention [3–7]. One scenario to reach the
compromise between the two antagonistic phenomena is the
formation of a spontaneous vortex state without applying an
external magnetic field [8]. Neutron diffraction experimen-
tally confirmed the bulk nature of the ferromagnetism from
Eu 4 f orbitals with an ordered moment of ∼7μB per Eu atom
and well suppressed antiferromagnetism of Fe 3d orbitals
associated with the bulk superconductivity [9–11]. Theoreti-
cally, the indirect Ruderman-Kittel-Kasuya-Yosida (RKKY)
interaction via the mediated itinerant electrons on Fe 3d
orbitals is proposed to be responsible for the ferromagnetism
of the Eu sublattice [12,13]. However, due to the infeasibil-
ity of performing inelastic neutron scattering measurements
on Eu-rich materials with significant neutron absorptions of
natural 152Eu and the unavailability of large single crystals,
the microscopic magnetic exchange couplings cannot be de-
termined experimentally, which largely impeded the thorough
understanding of the magnetic behaviors of Eu 4 f electrons in
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FIG. 1. (a) The illustration of the crystal and magnetic structure for Eu(Fe0.75Ru0.25)2As2. (b) The temperature dependence of the integrated
intensity (solid spheres) and peak width (FWHM, open circles) of the (2, 2, 0)T nuclear reflection, respectively. Note that the slight increase
of integrated intensity below 20 K is due to the ferromagnetic ordering of Eu. The inset shows the normalized in-plane resistivity of the
Eu(Fe0.75Ru0.25)2As2 single crystal, in which no anomaly due to the structure phase transition and spin-density wave order is observed.
(c) Comparison between the observed and calculated integrated intensities of the unique reflections at 2 K.

these ferromagnetic superconductors. Fortunately, the univer-
sal critical exponents provide an alternative to approach the
nature of ordered magnetism. Available experimental studies
on Eu-based pnictides have obtained the same critical expo-
nent β = 0.35 for EuFe2As2 [14] and EuNi2As2 [15], fitting
well into the universal class of three-dimensional isotropic
quantum Heisenberg model class [16]. In contrast, β = 0.32
was obtained for EuRh2As2 [26], more consistent with a
three-dimensional Ising model (β = 0.326) [16,27]. Further-
more, to the best of our knowledge, no studies on the critical
behaviors of Eu magnetism in the doping induced ferromag-
netic superconductors were performed yet, as the mostly used
two methods to extract the critical exponents, either magne-
tometry or calorimetry, do not apply due to the interference of
superconductivity.

In this Rapid Communication, we have developed a sys-
tematic method of combining the neutron diffraction mea-
surements, the first-principles calculations, and the quantum
Monte Carlo simulations to study the universal critical behav-
iors associated with a magnetic phase transition. A neutron
diffraction experiment on Eu(Fe0.75Ru0.25)2As2, an isovalent
doped ferromagnetic superconductor, found the critical expo-
nent β = 0.385(13). Based on the first-principles calculations
of its electronic structure, we noticed that the occupied states
of Eu 4 f orbitals located well below the Fermi level, indi-
cating the suitability of a localized anisotropic Heisenberg
model for describing the Eu magnetism. Further applying
a quantum Monte Carlo algorithm and using the computed
values of magnetic exchange coupling, β = 0.386 was found
theoretically, in excellent agreement with the value extracted
experimentally. The magnetism in the studied Eu-based fer-
romagnetic superconductor is thus identified as the universal
class of three-dimensional anisotropic quantum Heisenberg
model with long-range magnetic exchange coupling. This
finding points out a suitable microscopic theoretical model for
describing the nature of magnetism in the intriguing Eu-based
ferromagnetic superconductors.

Experimental results. Single crystals of the Eu-based mate-
rial Eu(Fe1−xRux )2As2 (x = 0.25) were grown from self-flux
(Fe,Ru)As, and well characterized to be a ferromagnetic su-
perconductor by electric resistivity, magnetization, and Möss-
bauer measurements [28]. A single crystal with the mass
∼5 mg and dimensions ∼3 × 2 × 0.2 mm3 from the same
batch was selected for the neutron diffraction experiment
(see the Supplemental Material [16] for the experimental de-
tails), which was performed on the four-circle thermal-neutron
diffractometer D10 at the Institut Laue Langevin (Greno-
ble, France). The crystal and magnetic structure of isovalent
ruthenium doped Eu(Fe0.75Ru0.25)2As2 at 2 K determined by
neutron diffraction is illustrated in Fig. 1(a). Since the par-
ent compound EuFe2As2 shows a spin-density wave (SDW)
order in the Fe sublattice accompanied by a structure phase
transition at 190 K [29], we have tracked a strong nuclear
reflection upon cooling, which is sensitive to the tetragonal-
orthorhombic structure phase transition signaled by a sudden
increase of its intensity and broadening of its width [7,9]. Fig-
ure 1(b) displays the temperature dependence of the integrated
intensity and the full width at half maximum (FWHM) of the
(2, 2, 0)T peak in the tetragonal notation, respectively. It is
shown that both of them keep almost constant, indicating the
structure phase transition is fully suppressed by 25% isovalent
Ru doping. In addition, no intensities were observed at the Q
points with propagation vector �k = (1/2, 1/2, 1)T even with
the analyzer, excluding any residual Fe SDW order in this bulk
superconductor. The absence of both structure phase transition
and SDW order in Eu(Fe0.75Ru0.25)2As2 is consistent with
the temperature dependence of its in-plane electric resistivity
shown in the inset of Fig. 1(b), in which no anomaly in
addition to the sharp superconducting transition at 24 K is
observed.

The integrated intensities of 241 reflections at 30 K
and 304 reflections at 2 K were collected, respectively,
to determine the details of the ground-state ferromagnetic
structure of Eu(Fe0.75Ru0.25)2As2. After necessary absorption
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TABLE I. Parameters of the nuclear and magnetic structures of
Eu(Fe0.75Ru0.25)2As2 at 2 K obtained from refinements of single-
crystal neutron diffraction data. The occupancy of Ru was refined to
be 22(5)% [space group: I4/mmm, a = 3.953(3) Å, c = 11.567(4)
Å].

Atom/site x y z B(Å
2
)

Eu (2a) 0 0 0 0.07(4)

MEu= (Ma, Mb, Mc ) = [0, 0, 7.0(2)]μB

Fe/Ru (4d) 0.5 0 0.25 0.10(4)
As (4e) 0 0 0.3617(3) 0.13(5)

corrections using the DATAP program [30], the equivalent
reflections were merged into the unique ones based on the
tetragonal symmetry. At 30 K, which is above the magnetic or-
dering temperature of Eu, the nuclear structure is refined using
the FULLPROF program within the I4/mmm space group [31].
The occupancy of Ru was refined to be 22(5)%, consistent
with the value of 25% determined from the energy dispersive
x-ray spectroscopy [28]. At 2 K, additional intensities appear
on top of the nuclear reflections measured at 30 K, suggesting
a magnetic propagation vector of �k = 0 for the Eu sublattice.
According to the irreducible representation analysis [32], only
ferromagnetic structures with the moments aligned along the
c axis or in the ab plane are allowed for the Eu2+ spins due to
symmetry restriction. However, invariant integrated intensities
of the (0, 0, even) reflections at 2 and 30 K exclude the
possibility of in-plane ferromagnetic alignment. As shown in
Fig. 1(c), adding a ferromagnetic Eu2+ moment of 7.0(2)μB

along the c axis into the nuclear structure determined from
30 K yields a rather good fitting to the intensities at 2 K.
The parameters of the nuclear and magnetic structures of
Eu(Fe0.75Ru0.25)2As2 at 2 K determined by the refinements
are given in Table I.

Figure 2 shows the temperature dependence of the inte-
grated intensity of the (1, 1, 0) reflection, from which the
ferromagnetic ordering temperature of the Eu2+ moments
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FIG. 2. The temperature dependence of the integrated intensity
of the (1, 1, 0) reflection in the whole temperature region (open
squares) and critical region [filled circles, also shown in the inset of
(a) as the enlarged plot], respectively. The vertical dashed line marks
the ferromagnetic ordering temperature of the Eu2+ moments. The
linear fitting (dashed line) to the magnetic intensity, IM (τ ), in the
double logarithmic plot is shown in (b).

can be determined to be TEu = 19.30(5) K. The excellent
stability and accuracy of temperature control within 0.05 K
at the D10 diffractometer provides the unique chance to
investigate the critical behavior close to the ferromagnetic
transition of Eu. Although we cannot observe the magnetic
diffuse scattering due to spin fluctuations above the transition
temperature with such a small single crystal, careful measure-
ments of the integrated intensity of from 17 to 20 K with
small temperature steps [as shown in the inset of Fig. 2(a)]
allows us to extract the universal critical exponent β of the
ferromagnetic phase transition. After subtracting the nuclear
contribution above TEu, the magnetic diffraction intensity can
be fitted using the power law IM ∝ M2 ∝ τ 2β , where M
is the magnetic order parameter and τ = TEu−T

TEu
. By linear

fitting (dashed line) to IM (τ ) in the double logarithmic plot
[Fig. 2(b)], the universal critical exponent β is deduced to
be 0.385 ± 0.013, which is significantly larger than that of
β = 0.35 for EuFe2As2 [14]. The experimental error of β

was estimated by considering the errors associated with the
choices of the exact value of TEu and the width of the critical
region, following the method of analysis adopted in Ref. [33].
Since the Ru 4d orbitals are much more extended than the Fe
3d orbitals, the RKKY-type long-range coupling between Eu
atoms mediated by the Fe 3d electrons on FeAs layers may
get enhanced in Eu(Fe1−xRux )2As2 with Ru doping, resulting
in the enhancement of long-range magnetic coupling in Eu
layers. Furthermore, the three-dimensional isotropic quantum
Heisenberg model displays a smaller critical exponent value
of β = 0.365 [17]. Thus, from the viewpoint of theory, we
expect that the relatively large universal critical exponent
β = 0.385(10) observed in the ferromagnetic superconductor
Eu(Fe0.75Ru0.25)2As2 might suggest a strong anisotropy in
a three-dimensional quantum Heisenberg model with long-
range magnetic exchange coupling.

First-principles calculations. Before evaluating numeri-
cally the universal critical exponent β for the ferromagnetic
superconductor Eu(Fe0.75Ru0.25)2As2, we have performed
first-principles calculations to establish a microscopic theo-
retical model for describing the Eu ferromagnetism. The cal-
culations were performed using the all-electron full potential
linear augmented plane wave plus local orbitals method [34]
as implemented in the WIEN2K code [35]. The exchange-
correlation potential was calculated using the generalized gra-
dient approximation (GGA) as proposed by Pedrew, Burke,
and Ernzerhof [36,37]. We have included the strong Coulomb
repulsion in the Eu 4 f orbitals on a mean-field level using
the GGA + Ue f f approximation, applying the atomic limit
double-counting scheme. Throughout this Rapid Communi-
cation, we have used a Ue f f of 8 eV, which is the standard
value for an Eu2+ ion [12], while we did not apply Ue f f to
the itinerant Fe 3d orbitals. The results were also checked for
consistency with varying Ue f f values. In addition, the spin-
orbit coupling was also included with the second variational
method in the Eu 4 f orbitals.

The calculated projected density of states on the orbitals of
Eu 4 f , Ru 4d , Fe 3d , and As 4p for Eu(Fe0.75Ru0.25)2As2

are shown in Fig. 3 based on the supercell method. Since
the Eu 4 f orbitals are quite localized, the Eu ions are in a
stable 2+ valence state with a half-filled 4 f shell, resulting
in the ferromagnetic order of Eu2+ spins with the magnetic
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FIG. 3. The calculated projected density of states on the
Eu 4 f , Ru 4d , Fe 3d , and As 4p orbitals per unit cell of
Eu(Fe0.75Ru0.25)2As2. The Fermi energy is set to zero (black dashed
line).

moment of 7μB. As can be seen clearly in Fig. 3, the spin-up
components of Eu 4 f states are located lower than −2 eV
below the Fermi level, while the spin-down components are
unoccupied and located well above the Fermi level (larger
than 10 eV). Near the Fermi level, the main contribution for
the electron conduction comes from the Fe 3d and Ru 4d
orbitals partially mediated by the As 4p orbitals. These results
are in good agreement with the conclusions from neutron
diffraction in this Rapid Communication and previous first-
principles calculations [12].

Ascribing to the localized behaviors of Eu 4 f orbitals
in Eu(Fe0.75Ru0.25)2As2, we establish an effective localized
three-dimensional anisotropic Heisenberg model with consid-
eration of the next-nearest-neighboring magnetic exchange
coupling in Eu layers for discussing magnetism in the Eu 4 f
orbitals,

Ĥ = J1

∑

〈i, j〉
�Si �S j + J2

∑

〈〈i, j〉〉
�Si �S j + J⊥

∑

〈i, j〉
�Si �S j, (1)

where �S is the magnitude of Eu spin. The 〈i, j〉 and
〈〈i, j〉〉 denote the summation over the nearest-neighbor and
next-nearest-neighbor sites, respectively. The parameters J1

and J2 describe the nearest-neighboring and next-nearest-
neighboring intralayer exchange interactions, respectively,
and J⊥ denotes the nearest-neighboring interlayer exchange
interaction. From the calculated energy data for various mag-
netic configurations [16,22], the magnetic exchange couplings
J1 = −4.10 meV, J2 = 0.51 meV, and J⊥ = −0.49 meV were
found for Eu(Fe0.75Ru0.25)2As2, demonstrating the ferromag-
netic ground state is consistent with the results from neutron
diffraction. Comparing with the calculated magnetic exchange
couplings of the parent compound EuFe2As2 [12], we note
that the values of magnetic exchange coupling are enhanced
by about five times, which stems from the extended Ru 4d
orbitals doping as expected in the aforementioned discussions.
As a result, a three-dimensional quantum Heisenberg model

with a strong anisotropy and long-range magnetic exchange
coupling is suitable for describing the magnetic behaviors in
the ferromagnetic superconductor Eu(Fe0.75Ru0.25)2As2.

Quantum Monte Carlo simulations. Based on the localized
strongly anisotropic Heisenberg model, for which the model
Hamiltonian is shown in Eq. (1), we have carried out a
quantum Monte Carlo simulation to evaluate the universal
critical exponent β for the ferromagnetic superconductor
Eu(Fe0.75Ru0.25)2As2. Although the Eu2+ has a large magni-
tude of spin-7/2, previous model calculations have demon-
strated that the universal critical exponent β is irrelevant to
the magnitude of large spin [38,39]. It motivates us to alterna-
tively use spin-1/2 for studying the universal critical exponent
for simplicity based on the stochastic series expansion (SSE)
algorithm [23].

In the SSE method [16,23], the exponential operator in the
partition function Z = tr eβ ′Ĥ is taken by a Taylor expansion
and the trace is described by the sum over a complete set
of states in a complete basis, Z = ∑

α

∑∞
n=0

β ′n
n! 〈α|(−H)n|α〉,

where |α〉 is a randomly selected state and β ′ = 1/kBT . kB

is the Boltzmann constant and T is the temperature. The
Hamiltonian is then rewritten as the summation of a set of
operators whose matrix elements are conveniently obtained.
We stochastically pick configurations from this infinite sum-
mation by means of importance sampling and average over
the observable states |α〉. Due to the presence of weak antifer-
romagnetic coupling strength J2 in the anisotropic Heisenberg
model in Eq. (1), it gives rise to the negative weights in the
samplings. Fortunately, J2 has one magnitude order smaller
than that of J1; the negative sign problem can be easily
overcome by introducing the absolute value of weight |Wi| in
the calculated expectation value of the observables O,

〈O〉 =
∑

i WiOi∑
i Wi

=
∑

i WiOi/
∑

i |Wi|∑
i Wi/

∑
i |Wi| = 〈O sgn W 〉′

〈sgn W 〉′ , (2)

where Wi is the weights of the samplings and 〈·〉′ is denoted
as the expectation value measured in these new weights.
Therefore, the expectation value of the observables O and
the sign of the weights are evaluated simultaneously. In the
numerical calculations, the three-dimensional L × L × L sizes
with L ranging from 8 to 14 are performed. We set the number
of bins to 50, where the first 10 are used for reaching the
thermodynamic balance and the rest are used for measuring
the physical observable quantities. Each bin contains 1000
Monte Carlo steps [16].

The physical observable magnetization m = 〈∑i Ŝz
i 〉 and

its reduced four-order Binder cumulant U = 3(1 − 1
2

〈m4〉
〈m2〉2 )

for various system sizes L are evaluated numerically [16,40].
Here it should be noted that the Binder cumulant reaches
1 at the paramagnetic phase whereas it reaches 0 at the
ferromagnetic ordering phase. Applying the finite-size scal-
ing [16,24,40], the physical quantities follow the relations
of mL(T ) = L−β/νm̄(L1/ντ ) and UL(T ) = Ū (L1/ντ ) in the
vicinity of the critical point of temperature Tc, where τ =
(T − Tc)/Tc and Ū and m̄ are universal functions that are
independent of the size scale of L. The parameter ν is also
a critical exponent, which describes the behavior of the corre-
lation length in the vicinity of the critical temperature. At the
critical temperature Tc, the magnetization is mc = mL(Tc) =
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FIG. 4. Log-log plot of size dependences of the magnetization
mc and Binder cumulant dU/dT |c for the strong anisotropic three-
dimensional Heisenberg model of the ferromagnetic superconductor
Eu(Fe0.75Ru0.25)2As2.

L−β/νm̄(0) = L−β/νm∗, which is shown in Fig. 4. Considering
the slope of Binder culuant dU/dT |c as a function of size
L, dU/dT |c = L1/νŪ ′(0) [16], shown in Fig. 4, we finally
obtain the universal critical exponent β = 0.386, which is in
excellent agreement with the experimental result of 0.385(13).
These results obtained in the neutron diffraction experiment,

the first-principles calculations, and the model simulations
clearly demonstrate that the critical behavior of Eu magnetism
in the ferromagnetic superconductor Eu(Fe0.75Ru0.25)2As2 be-
longs to the universal class of a three-dimensional anisotropic
quantum Heisenberg model with long-range magnetic ex-
change coupling.

Conclusion. By systematically combining the neutron
diffraction experiment, the first-principles calculations, and
the quantum Monte Carlo simulations, we have ob-
tained a perfectly consistent universal critical exponent
value of β = 0.385(13) experimentally and theoretically for
Eu(Fe0.75Ru0.25)2As2. The magnetism in the Eu-based ferro-
magnetic superconductor is thus identified as the universal
class of three-dimensional quantum Heisenberg model with
a strong anisotropy and long-range magnetic exchange cou-
pling. This systematic study points out a suitable microscopic
theoretical model for describing the nature of magnetism in
the intriguing Eu-based ferromagnetic superconductors.
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