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ABSTRACT: Like any physical quantity whose symmetry
properties mimic its source, the optical force acting on a
neutral spherical particle has a symmetry that mimics the
incident field. The optical force consists of the gradient force
and the scattering force. Here, we explicitly show that in
optical lattices, the in-plane gradient force and scattering force
have additional even and odd symmetries upon 2N-fold
rotation, respectively, which are not shared by the incident
field that is N-fold discrete rotationally symmetric. Similar
hidden symmetries, namely, even and odd symmetries upon
reflection about the focal plane, are also found in particles
illuminated by a Gaussian beam, suggesting that it is a general
property of the optical force. These are verified numerically in
multiple examples and analytically for three incident plane waves, by which we also discover that the profiles of the gradient
force and the scattering force are invariant with respect to material composition and particle size for a spherical particle. As such,
one can tune the polarization to almost completely “turn off” either gradient force or scattering force, leaving behind a purely
irrotational or solenoidal force field, opening a new freedom to control the conservativeness of optical forces.
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The transfer of photon momentum to physical objects
induces optical forces. The most intuitive form is radiation

pressure, where light striking a surface exerts a force on it. The
investigation of radiation pressure dates back to Kepler, who
believed the sun’s radiation pressure caused the tail of a comet to
point away from the sun. The earliest explanation on a sound
mathematical footing, however, was put forward over 200 years
later by Maxwell, who established the classical theory of
electromagnetism.
The first practical application of optical force was developed

by Ashkin in 1970, who successfully trapped and accelerated a
micron-sized particle using multiple laser beams.1 Later, he and
co-workers experimentally implemented the optical trapping of
a dielectric particle by a single highly focused laser beam,2 a
technique now known as optical tweezers, rating among the
most widely recognized applications of optical force. Nowadays,
one can achieve a variety of contactless optical micro-
manipulations, including optical trapping,1−19 accelera-

tion,1,20−22 transportation,23−26 sorting,27−34 stretching,35,36

and so on. Indeed, the optical force-based manipulation of
microparticles has become an indispensable tool extensively
used in physics, chemistry, biology, colloidal science, engineer-
ing, and so on.37−43

Optical tweezers also mark a milestone in the understanding
of light−matter interactions. Scientists have begun to recognize
that, besides the radiation pressure, which points along the
direction of light propagation, there exists another important
optical force, which emerges when an object is put into an
inhomogeneous optical field. This force, stemming from the
inhomogeneity of the optical field and thus termed the gradient
force (GF), does not point along the direction of light
propagation in general. For a Rayleigh particle, whose size is
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much smaller than the illuminating light wavelength, the GF is
proportional to the gradient of the free energy, with the
proportionality coefficient depending on particle properties
such as size, permittivity, and permeability. The remaining part
of the optical force is termed the scattering force (SF), of which
the previously known radiation pressure is an example.
GF and SF are the two fundamental constituents of the optical

force, and they play completely different roles. The curl-less GF,
which can be expressed as a gradient of a scalar potential energy,
thus conservative, is responsible for optical trapping, by drawing
the particle to the intensity maximum (potential minimum) and
trapping it therein. The divergence-less SF,44,45 which typically
points in the direction of light propagation, is nonconservative.
It also has wide applications, which include propulsion,25,46,47

pulling,48−55 light-driven motors,56−60 and so on, but it cannot
trap a particle by itself.61 Accordingly, dividing the optical force
into GF and SF or, in a more physical sense, conservative and
nonconservative forces is not only of significance in our
understanding of light−matter interaction, but also helps in
designing optical fields, as well as the particles being
manipulated, to realize a richer diversity of practical application.
The gradient and scattering force components for a Rayleigh

particle can be readily separated,61 while for particles large
enough to be considered in the geometrical optics limit, a
semianalytical expression of the two force components can also
be determined, as their respective light scattering can be
determined by Snell’s law.62 Nevertheless, despite the
conceptual and practical importance of the GF, forMie particles,
which are the most experimentally accessible, neither a
formalism nor any separate and accurate profiles of the GF
and SF have emerged after decades of research.63−65 Until
recently, a numerical algorithm based on the Fourier transform
was proposed, where the individual profiles of GF and SF acting
on aMie particle were presented for the first time.66,67 However,
the algorithm belongs to a numerical decomposition scheme
that is not localized in space (i.e., integration over a very large
region is required for convergence) and is, therefore, incapable
of obtaining analytical results, thus, obscuring our in-depth
physical understanding.
In this Article, we present an alternative algorithm for GF and

SF decomposition, which allows semianalytical results for
incident light composed of an arbitrary set of plane waves.
Because the set of plane waves is complete for propagating
waves, this formulation is general. As an illustrative example, we
focus on the three-wave interference field (TWIF), which
consists of three identical homogeneous plane waves with their
wave vectors forming an equilateral triangle, as shown in Figure
1b. The GF and SF acting on a spherical particle residing in such

a field show hidden symmetries that are found in neither the
incident field nor the total optical force. In addition, in the
TWIF, the profiles of the GF and SF exerted on a spherical
particle are solely determined by the optical field itself, while the
change of particle properties, such as size and dielectric constant,
affects only the magnitude but not the profile of the spatial force.
We call this phenomenon profile invariance, which is exclusively
true for TWIF illuminating a spherical particle. Finally, to trace
the origin of the hidden symmetry and invariant profiles, we
derived analytical expressions for the GF and SF acting on a
spherical particle of arbitrary size in such a TWIF, which prove
explicitly the existence and origin of the hidden symmetry and
invariant profiles.

■ RESULTS AND DISCUSSION
Hidden Symmetries in the Gradient and Scattering

Force. To see the hidden symmetry, the total optical force
(TOF) is decomposed into the conservative irrotational GF and
nonconservative solenoidal SF. The time-averaged optical force
F acting on a particle placed in a monochromatic optical field,
denoted simply as the optical force hereafter, can thus be written
as

ψφ= + = −∇ + ∇ ×F F Fcon non (1)

where the conservative part (GF) Fcon =−∇φ is expressed as the
gradient of a scalar potential φ, and the nonconservative part
(SF) Fnon = ∇ × Ψ is written as a curl of a vector potential Ψ.
The general expressions of both parts are given in ref 68. We
explicitly derive the simplified expressions for the case when the
optical field is expanded in a discrete set of homogeneous plane
waves, as presented in Methods, and these expressions are
adopted in this Article.
We consider np incident plane waves:

∑ θ ϕ ω= ̂ + ̂ ̂ · −
=

E p q ikk r i tE ( )exp( )
j

n

j k j k j0
1

j j

p

(2)

where θ ϕ̂ ̂ ̂k , , andj k kj j
are the unit vectors in the spherical

coordinate system for the jth plane wave, as illustrated in Figure
1. Two complex numbers (pj, qj) determine the polarization, and
k and ω denote the wavenumber and circular frequency of the
waves, respectively.
As an illustrative example, we first consider the TWIF, which

is fully characterized by
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Figure 1. (a) Schematic of the coordinate system. θ ϕ̂ ̂ ̂k , , andj k kj j
denote the unit vector triplet for the jth plane wave. (b) Schematic illustration for a

sphere illuminated by a TWIF. (c) Contour color plot showing the intensity distribution, while the arrows show the Poynting vector for the TWIF,
governed by eqs 2−4, with =p q i( , ) (1, )/ 2 , λ = 1.064 μm, and the background dielectric constant εb = 1.00.
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and

= = =p q p q p q p q( , ) ( , ) ( , ) ( , )1 1 2 2 3 3 (4)

We are interested in the TOF, GF, and SF exerted by the
TWIF on a spherical particle immersed therein. Throughout this
article, the wavelength is fixed at λ = 1.064 μm and the
polarization vector (p, q) is normalized such that |p|2 + |q|2 = 1.
The uniform background medium, which does not affect the
symmetry, is either water with permittivity εb = 1.332 or air.
Figure 2 shows the spatial force profiles for a polystyrene

particle (εs = 2.53) with radius rs = 0.3 μm. Note that Figure 2 is

not showing the force density, rather it plots the optical forces
when the sphere is located at different position represented by
the horizontal and vertical axes. All plane waves are left-circularly
polarized, corresponding to =p q i( , ) (1, )/ 2 in eq 4. Figure
2a−c shows the magnitude of the (undecomposed) TOF and its
radial and azimuthal components within the xy-plane to
highlight the symmetry. As with the incident fields, the optical
force (both radial and azimuthal components) has a 3-fold
discrete rotational symmetry and mirror symmetry about the
plane formed by ̂z and each ̂k j. No other symmetry can be
identified. However, when it is decomposed into the
conservative and nonconservative parts, the hidden symmetries
are revealed. In addition to the mirror symmetry and the 3-fold
d i s c r e t e r o t a t i o n a l s y mm e t r y e x p r e s s e d a s

π ϕ ϕ π⃡ = +n nR F F(2 / ) ( ) ( 2 / )p p , Figure 2d−f shows the in-

plane GF, which clearly has what we call a hidden even
symmetry, π ϕ ϕ π⃡ = +n nR F F( / ) ( ) ( / )p con con p , that is absent
from the incident field, while Figure 2g−i shows the in-plane SF,
w h i c h h a s a h i d d e n o d d s y m m e t r y ,

π ϕ ϕ π⃡ = − +n nR F F( / ) ( ) ( / )p non non p , where R⃡ indicates the
rotational matrix with respect to the angles in its argument. In
contrast, these symmetries do not exist in the TOF or the
incident field. We have performed extensive calculations for
particles of different sizes and materials and also for TWIFs with
different polarizations and always reached the same conclusion
(see Figures S1 and S2), that is, that when the particle size was
varied by more than 2 orders of magnitude, the hidden
symmetry remained unchanged.
It can be shown that, for an incident field withN-fold discrete

rotational symmetries, one has

∇· ∝ ∇ ×F F (5)

because

∫ ∫π π
= − ∇ ∇′· ′

| − ′|
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4
( )

d
1

4
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one can conclude that if the GF has hidden even symmetry, then
the SF has hidden odd symmetry. If one assumes that the GF has
a hidden even symmetry, which is the case for an optical lattice
(Note S3 and Figures S1 and S2), then the SF will have a hidden
odd symmetry, in agreement with our calculation. Later in this
Article, and also, in Note S2, we prove the existence of these
hidden symmetries analytically for a specific incident field. More
examples and details are available in the Supporting Information.

Invariant Profiles in the Three-Wave Interference
Field. We now proceed to show numerically the invariance of
the profiles, that is, that the spatial force profiles of GF and SF
acting on a spherical particle immersed in the TWIF are
independent of the properties of the particle. In Figure 3a, the

TOF, GF, and SF at a spatial point on the x-axis acting on a
metallic particle with εs =−48.8 + 3.16i, μs = 1, and rs = 51.5 μm
are divided by the corresponding forces of a 0.3 μm polystyrene
sphere located at the same spatial point, while Figure 3b shows
the corresponding profiles of a high-dielectric, magnetic particle
with εs = 9, μs = 3, and rs = 42.5 μm. The black line is the TOF,
where the drastic variation along the x-axis shows its strong
dependence on particle properties. The blue and red curves are
the GF and SF, respectively. The curves of divided GF and SF

Figure 2. Spatial force profiles for a polystyrene sphere placed in a
TWIF. Each point on the figure represents the coordinate of the sphere
center. The radius is 0.3 μm and the TWIF has a polarization vector
characterized by (p, q) = (1, i). (a−c) The magnitude (|F|), radial part
( ρ= · ̂ρF F ), and azimuthal part ( ϕ= · ̂ϕF F ) of the total optical force F.
(d−f) Same as panels (a)−(c), except that the conservative force Fcon is
plotted instead of the total optical force. (g−i) Same as panels (a)−(c),
except that the nonconservative force Fnon is plotted instead of the total
optical force. Both conservative and nonconservative forces have
additional hidden symmetry that the optical force does not have. GF has
a hidden even symmetry, while SF has a hidden odd symmetry. The thin
blue lines are guides of eyes to highlight the underlining symmetry. Figure 3. TOF, GF (con), and SF (non) acting on a spherical particle

along the x-axis normalized by their corresponding parts in Figure 2,
which are at the same positions but with different particles. The particle
is illuminated by a TWIF. (a) A spherical particle with εs = −48.8 +
3.16i (silver metal). The radius is 51.5 μm, and the polarization of the
TWIF is defined by (p, q) = (1, 0.5 + i) (2/3). (b) A high-dielectric,
magnetic particle with εs = 9 and μs = 3. The radius is rs = 42.5 μm, and
the polarization of the TWIF is defined by (p, q) = (1 − 0.3i, −0.5 + i)
before normalization.

ACS Photonics Article

DOI: 10.1021/acsphotonics.9b00746
ACS Photonics 2019, 6, 2749−2756

2751

http://pubs.acs.org/doi/suppl/10.1021/acsphotonics.9b00746/suppl_file/ph9b00746_si_005.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsphotonics.9b00746/suppl_file/ph9b00746_si_005.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsphotonics.9b00746/suppl_file/ph9b00746_si_005.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsphotonics.9b00746/suppl_file/ph9b00746_si_005.pdf
http://dx.doi.org/10.1021/acsphotonics.9b00746


are flat, which indicates that the force profiles are invariant even
when the particle size and composition vary dramatically, as in
Figure 3. Nevertheless, the magnitudes of the GF and SF depend
drastically (and differently) on the particle properties. As a
result, when the GF and SF are combined into the TOF, the
profile is no longer independent of the particle properties, as
shown by the black line. In addition, the spatial profiles of both
GF and SF are independent of the incident polarization (data
not shown). The profile invariance of the GF and SF is proved
analytically in a later part of the article, as well as in Note S2.
Further examples and details can be found in Figures S1 and S2.
Analytical Proof of the Hidden Symmetry and

Invariant Profiles. To trace the origin of the hidden symmetry
and profile invariance, we derived rigorous analytical expressions
for the optical force acting on a spherical particle placed in a
TWIF. The particle can be of arbitrary size and made from any
isotropic and homogeneous material. The mathematical results
are summarized in Note S2. In short, it is derived rigorously and
analytically that in a TWIF

∝ ∇| |

∝ × *

F E

F E B

,

( ) Re( ) ,

con
2

non (7)

for any homogeneous and isotropic particles, where ∥ indicates
the transverse components on the xy-plane. Accordingly, as
evident from Figure 1b,c, in addition to the 3-fold discrete
rotational symmetry and the ̂k j− ̂z-plane mirror symmetry of the
incident field, the GF has a hidden even symmetry, while the SF
has an additional hidden odd symmetry.
For the TWIF, the spatial force profiles for the GF and SF are

invariant with respect to polarization as well as particle
properties. We remark that while profile invariance is a unique
property of the TWIF, hidden symmetry is a general physical
phenomenon that can be found in many situations.
Generating Conservative or Nonconservative Force

Fields.We can thus design appropriate optical fields by simply

tuning the polarization vector −p i p( , 1 )2 such that a given
particle is subject exclusively to either conservative GF or
nonconservative SF. Figure 4a−c shows a phase diagram for a
particle of radii equal to 0.5λ, 1.0λ, and 1.5λ, respectively. The
green and blue regions correspond to areas in the ε−μ phase
space, where one can tune p to induce nearly conservative and
nearly nonconservative forces (in-plane), respectively. We note
that, in experiments, the z-direction force can be counter-
balanced by another force. For example, each incident wave can
have a small upward component in its k-vector, which pushes the
particle against a substrate, hence, stabilizing the z-directional
motion. The conservative force can be more than 3 orders of
magnitude larger than the nonconservative force, and vice versa.
The red parts in Figure 4 denote regions where the relative
strength of the two forces can be varied from ∼10−3 to ∼103 by
simply tuning p. The situations denoted by the various colors are
summarized in Figure 4d. This system allows one to switch
between a conservative and a nonconservative phase readily. It is
difficult to realize purely conservative or nonconservative force
for larger particles, as the colored regions gradually shrink with
increasing radius, especially for the green regime. Figure 5a
shows a phase diagram in the permittivity−radius space. One
observes that with λ≲r 0.25s , one can tune p such that the
conservative force becomes dominant. As the particle size
increases, it becomes harder to achieve a nearly conservative
force, at least with a TWIF. However, it becomes easier to make

the nonconservative force dominant, as the blue color
encompasses most of the phase space, while the main part of
the green regime appears near the low-permittivity region for
large particles, except for some small scattered regions. Figure 5b
is an enlarged version of the shaded part in Figure 5a. The two
straight lines cross at the red point in Figure 5b, which has ε = 2.0
and rs = 0.85λ, serving as a typical example for the case in which,
by tailoring p, one can switch the optical force from nearly
conservative to nearly nonconservative. The case is visualized
more clearly in Figure 5c−f. In polarization 1, shown in Figure
5c,d, the nonconservative force is 4 orders of magnitude larger,
while conversely in polarization 2 (Figure 5e,f), the conservative
force is larger, again by 4 orders of magnitude.
We note that, for optical lattices other than a TWIF, one can

also switch between the conservative and nonconservative
phases by tuning the polarization. Figure 6 shows the forces for a
quasi-crystal optical lattice formed by five-wave interference
(with 5-fold discrete rotationally symmetric fields). The regime
where the conservative force dominates is illustrated in Figure
6a−c, where the profiles of TOF and GF are nearly the same.
Likewise, the nonconservative-dominated regime is illustrated in
Figure 6g−i, where the profiles of TOF and SF are nearly the
same. An intermediate case where GF and SF are comparable is
shown in Figure 6d−f. In addition to the 5-fold rotational
symmetry and mirror symmetry possessed by the incident field
and TOF, the GF and SF clearly have additional hidden even or
odd symmetry.

Figure 4. Phase diagrams in the permittivity−permeability space for
optical forces acting on a particle of radius 0.5λ (a), 1.0λ (b), and 1.5λ
(c), illuminated by a TWIF in air. Green (blue) regions denote
combinations of ε and μ at which extremely dominant conservative
(nonconservative) force can be realized by tuning the value of p in the

polarization vector, where = −p q p i p( , ) ( , 1 )2 . Here “extremely
dominant”means one of the forces is greater than the other by at least 3
orders of magnitude. In the red regions, one can achieve both extremely
dominant conservative and nonconservative forces. The diagonal
straight lines are guides to the eye to illustrate the symmetry with
respect to ε and μ. (d) Color key to the tunability of conservative and
nonconservative forces.
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Although one cannot completely eliminate either the GF or
the SF, their strengths can differ by 2−3 orders of magnitude, as

shown in Figures 5 and 6, suggesting a convenient and effective
way to create conservative or nonconservative force fields by

Figure 5. (a) Similar to Figure 4, but in the radius−permittivity phase space. (b) An enlarged view of the shaded part in panel (a). The two straight
yellow lines cross at a red point with ε = 2.0 and rs = 0.85λ, where both dominant conservative and dominant nonconservative optical forces can be
achieved by tuning the value of p. (c, d) The spatial distribution profiles of conservative forces acting on a particle with ε = 2.0 and rs = 0.85λ sitting in

the TWIF with polarization vector = −p q p i p( , ) ( , 1 )2 , with p = 0.153. A nearly pure nonconservative force is observed over the entire space,
outweighing its conservative counterpart by over 3 orders of magnitude. (e, f) The same as panels (c) and (d), except for p = 0.745. Now the
conservative force surpasses its counterpart by over 3 orders of magnitude. Panels (c)−(f) suggest a simple procedure to switch between two essentially
different optical forces through tuning the polarization of the incident wave.

Figure 6. Forces acting on a dielectric particle induced by a quasi-crystal optical lattice formed by five identical plane waves with their wave vectors
forming a regular pentagon in air. (a−c) A situation (rs = 0.45λ, ε = 1.25, and (p, q) = (0.6625, 0.7491i)) where Fcon dominates. (d−f) A situation (rs =
0.50λ, ε = 2.50, and =p q i( , ) (1, )/ 2 ) where neither dominant. (g)−(i) show the situation (rs = 0.50λ, ε = 2.00, and (p, q) = (0.7, 0.7141i)), where
Fnon dominates.
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simply tuning the polarization. It is noted again that the GF and
SF keep their hidden symmetry, regardless of changes in the
polarization and particle properties.
In the additional supporting files, we include four movies

(Movies 1, 2, 3, and 4) to illustrate how the phase diagrams in
the permittivity−permeability space evolve for particles with
varying radius. One can easily identify parameter combinations
in which either Fcon or Fnon is dominant, both are dominant, or
neither is dominant.

■ CONCLUSIONS
We have proved, numerically and analytically, that the GF and
SF have hidden symmetries, where the incident field and TOF
do not. Creating a TWIF allows the GF and SF to have higher
symmetry than the incident field and TOF, indicating a different
origin for these forces. According to eq 7, the GF is dictated by
the gradient of the intensity, and thus, its hidden symmetry is
even, whereas the SF is proportional to the Poynting vector and
its hidden symmetry is odd. We stress that eq 7, derived for
TWIF, is exact for a particle of arbitrary size rather than only
valid under small particle approximation.
A simple method is proposed to tune a force field to be nearly

conservative or nonconservative by varying the polarization,
which works for crystal or quasi-crystal optical lattices. We note
that it is formally incorrect to treat an optical lattice such as the
TWIF as a 3-fold discrete rotationally symmetric potential for
dielectric particles, even approximately, because its conservative
part is 6-fold symmetric for spherical particle of arbitrary size,
even though it is not simply proportional to the gradient of light
intensity.
Last but not least, we remark that hidden symmetries like

those for the optical lattices also exist for a sphere trapped by
ideal water-immersed optical tweezers, which assumes an
aplanatic beam with no aberration, as supported by analyzing
the data presented in ref 66. The GF in aberration-free optical
tweezers is found to have an odd symmetry (defined by
Fcon
x (x,y,z) = −Fcon

x (−x,y,z), Fcon
y (x,y,z) = −Fcon

y (x,−y,z), and
Fcon
z (x,y,z) =−Fcon

z (x,−y,z)), which is also true for the transverse
SF (Fnon

x and Fnon
y ). However, the longitudinal SF, Fnon

z , has an
even symmetry (defined by Fnon

z (x,y,z) = −Fnon
z (x,y,−z)), as

shown in Figure S5. In summary, hidden symmetries exist in
high-symmetry situations and can take different forms such as
hidden even and hidden odd rotational symmetries and hidden
even and hidden odd mirror symmetries.

■ METHODS
Decomposing the Optical Force into Conservative

and Nonconservative Components. The general formula-
tion for partitioning the optical force into the conservative (GF)
and nonconservative (SF) parts was previously derived.68 Here
we give a somewhat more straightforward formalism for the case
when the optical field is expanded by a discrete set of
homogeneous plane waves, which is applicable for any
monochromatic field, at least in principle.
By expanding the incident electric field in plane waves, one

arrives at

∑= = ·
=

E ik rE E Ewith exp( )
i

n

i i i i
1

0

p

(8)

where θ ϕ= ̂ + ̂p q( )i i k i ki i
is the complex vector amplitude for

the ith plane wave, and the time dependence exp(−iωt) has been

assumed and skipped for simplicity. The (time-averaged) optical
force F acting on a spherical particle immersed in such an optical
field is written as a sum of the interception force Fint and recoil
force Frec:

48

= +

= + +

F F F

F F F F

,int int
e

int
m

rec rec
e

rec
m

rec
x

(9)

where each term consists of a sum over various orders of electric
and magnetic multipoles. Their full explicit expressions can be
found in Note S1. As an example, we present below the electric
part of the interception force Fint

e , which reads, in electrodynamic
units with c = ε0 = μ0 = 1:

∑

∑ ∑π

=

= −
+

+
[ − ]
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= =

E l
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a Q x Q x

F F
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l l i j i j l i j i j

int
e

1
int
e( )

int
e( ) 0

2

1 1

(1)
, ,

ee (2)
, ,
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where al is the Mie coefficient,69 np is the number of plane waves
that make up the optical field, and = ̂ · ̂x k ki j i j, . Two auxiliary
functions, Ql

(1)(x) and Ql
(2)(x), can be expanded in the

Legendre polynomials Pn(x):

∑

∑

= + − + −

= + − + −

=
−

=
−

Q x m l m l m P x

Q x m l m l m P x

( ) (2 1 )(2 1 2 ) ( ),
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l
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l
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l

l m

(1) (2)

1

(2) (2)

2 (11)

with∑ =m

l(2)
1 and∑ =m

l(2)
2 denoting that the summation indexm

assumes, respectively, all positive odd and even integers between
1 and l. In eq 10, each of the two auxiliary vectors Zi,j

ee and Zi,j
mm is

separated into a gradient term and two remainder terms that
contribute only to the solenoidal parts,

= ∇ − ∇ × −

= ∇ − ∇ × −

D i

D i

Z S S

Z S S

2 Re ,

2 Re

i j i j i j i j

i j i j i j i j
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ee
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ee

,
em
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,
mm

,
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,
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(12)

with

= · * [ − · ] = · * [ − · ]

= × * [ − · ] = × * [ − · ]

= × * [ − · ]

D i k k r D i k k r

i k k r i k k r
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,
ee

,
mm

,
ee

,
mm

,
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(13)

and Bi = ki × Ei. It can be proved that the term associated with
ReSi,j

em in eq 12makes no contribution to the conservative part of
the optical force. It is noted that in all∇ one should replace ∂/∂xi
by ∂/∂(kxi). Hence, eqs 10−13 complete the decomposition of
the electric part of the interception force Fint

e . To be more
specific, replacing vectors Zi,j

ee and Zi,j
mm by their real parts,

Re[Zi,j
ee] and Re[Zi,j

mm], respectively, in eq 10 gives the
conservative part Fint,con

e , while substituting Im[Zi,j
ee] and

Im[Zi,j
mm] for Zi,j

ee and Zi,j
mm leaves us with the nonconservative

part Fint,non
e of the electric part of the interception force. The

treatment of the other terms in eq 9 is similar but mathematically
more complicated (see Note S1).
It is noted that
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which are associated with the gradient of light density, the curl of
the spin angular momentum density (also known as Belinfante
spin density), and the complex Poynting vector, as well as some
constant factors.
SomeRelations in the TWIF. In the TWIF described by eqs

2−4, it is straightforward to demonstrate that
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It is noteworthy that, while Re(E × B*) is purely solenoidal,
Im(E × B*) contains an irrotational component parallel to the
plane formed by the three wave vectors and a solenoidal
component perpendicular to the wave vector plane. When
Im(pq*) = 0, one has an identically vanishing Re(E × B*) and a
finite Im(E × B*).
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