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Detecting many-body-localization lengths with cold atoms
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Considering ultracold atoms in optical lattices, we propose experimental protocols to study many-body-
localization (MBL) length and criticality in quench dynamics. Through numerical simulations with exact
diagonalization, we show that in the MBL phase the perturbed density profile following a local quench remains
exponentially localized in postquench dynamics. The size of this density profile after long-time-dynamics defines
a localization length, which tends to diverge at the MBL-to-ergodic transition as we increase the system size.
The determined localization transition point agrees with previous exact diagonalization calculations using other
diagnostics. Our numerical results provide evidence for violation of the Harris-Chayes bound for the MBL
criticality. The critical exponent ν can be extracted from our proposed dynamical procedure, which can then be
used directly in experiments to determine whether the Harris-Chayes-bound holds for the MBL transition. These
proposed protocols to detect localization criticality are justified by benchmarking to the well-established results
for the noninteracting three-dimensional Anderson localization.
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I. INTRODUCTION

Ultracold atomic gases confined in optical lattices with their
unique controllability allow for artificial quantum engineering
of lattice Hamiltonians with large system sizes beyond the
computational reachability of classical simulations [1–6]. In
the experiments, Bose and Fermi Hubbard models as well
as spin Hamiltonians have all been emulated to study both
equilibrium quantum phase transitions of ground states and
also out-of-equilibrium many-body dynamics. Mott transitions
of both bosons and fermions have been found in experi-
ments [7–9], and even superchange mediated magnetic phases
[10–12] have recently been accomplished through the state-of-
the-art quantum microscope techniques [13–23]. Observing
novel quantum dynamics in a strongly correlated setting is
presently attracting growing experimental research interests in
cold atoms and other synthetic quantum systems [24–32].

Thermalization, a most common phenomenon for interact-
ing particles, could break down in isolated quantum systems
subjected to random disorder potentials. Starting from Ander-
son’s seminal work on localization [33], it has now been well
established that noninteracting particles moving in a disordered
medium will be localized. The robustness against interac-
tion effects, however, remained controversial until the recent
studies of many-body localization (MBL) [34–36]. Through
recent studies, the persistence of localization in interacting
systems has been established through a perturbative field
theory calculation [34] and a rigorous mathematical proof [37]
together with extensive numerical works [38–49]. To describe
the MBL phase, a phenomenological theory of local integrals
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of motion has been proposed, which provides a physical picture
of highly constrained dynamics in the localized phase [50–53].
The consequent dynamical phenomena have been observed in
experiments of ultracold atoms and trapped ions [54–61].

More recent theoretical efforts in the MBL context are de-
voted to understanding the delocalization transition [62–65] to
the quantum thermal phase where the eigenstate thermalization
hypothesis [66,67] is expected to hold, for this type of transition
does not have an analog in the noninteracting problem of
Anderson localization. To characterize the transition, various
diagnostics such as entanglement entropy scaling and many-
body energy level statistics were thoroughly investigated in
theory, and scaling functions based on these quantities were
proposed to describe the MBL-to-ergodic criticality. Across
the transition the quantum entanglement entropy scaling would
switch from area- to volume-law [41]. The level statistics
exhibits a transition from Poisson type to Wigner-Dyson
[38]. These quantum entanglement and statistical quantities
offer concrete measures to describe the criticality, but these
theoretical “observables” turn out to be extremely challenging
to measure, and it remains unclear how to accurately probe
MBL length in experiments. The present theoretical debate
about the validity of Harris-Chayes bound [68,69] for MBL
transition [43,62,63,70] makes the task to probe localization
length exceedingly desirable.

Here we propose to use quench dynamics to probe the
localization length of interacting atoms in the disorder potential
and the corresponding MBL criticality. We find that an added
hole in the MBL phase shows an exponentially decaying
density profile after long-time dynamical evolution, whereas
in the ergodic phase its density distribution completely spreads
over the whole lattice system. The size of the density profile
in the long-time-evolved final state defines a localization
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length, whose critical behavior can be directly probed in
experiments. The transition point determined by our defined
localization length agrees with that by other diagnostics.
In our numerical results, the critical exponent is found to
violate the Harris-Chayes bound [68,69], which implies MBL
criticality is beyond the description of conventional field theory
or renormalization group study for disorder systems. It is
worth remarking here that this work is rather to propose an
experimental scheme to detect the MBL length and criticality
than to calculate a precise critical exponent. Whether the
Harris-Chayes bound holds or not at the MBL transition would
rely on future experiments. The proposed schemes are justified
by benchmarking to the extensively studied three-dimensional
(3D) Anderson localization.

II. MODEL AND METHOD

To be concrete we consider a model Hamiltonian of spinless
fermions with nearest-neighbor interactions

Ĥ =
∑

〈jj ′〉
[−t(ĉ†j ĉj ′ + H.c.) + V n̂j n̂j ′ ] +

∑

j

hj n̂j . (1)

Here 〈jj ′〉 denotes nearest-neighboring sites, t is the tunneling
matrix element (t is set to be the energy unit throughout), ĉ

†
j

(ĉj ) is a fermionic creation (annihilation) operator. The second
term describes the interaction between nearest-neighboring
sites with V the interaction strength and n̂j = ĉ

†
j ĉj is the

number operator. The last term corresponds to the disorder
potential, where hi is drawn from the uniform distribution
[−W,W ]. This model is equivalent to the spin-1/2XXZ model
with random field via the Jordan-Wigner transformation. We
consider this model instead of the experimental system of
spinful fermions for the interests of performing numerical
calculations of large system sizes. The proposed method and
the findings based on the spinless fermion model to present
below are also expected to hold for spinful fermions as well
due to the robust universality of the MBL transition. We focus
on half filling in this study.

We propose to use quench dynamics to probe MBL critical-
ity, which is experimentally accessible with quantum micro-
scope techniques in ultracold atomic gases. As elaborated in
previous studies, interacting fermions will display MBL with
strong disorder potential. In analogy to Anderson localization,
the response to a local quench is expected to be bounded within
a local region restricted by the localization length [71]. We thus
propose to measure the localization length by monitoring the
perturbed density profile after a local quantum quench.

More precisely, the initial state we choose is a “charge
density wave (CDW) state” with atoms occupying every other
lattice site, which is the same as used in the experiment
[54]. We average over two different types of CDW states:
atoms occupying either all even sites or odd sites. Then we
let the state evolve for long enough time say τ1 such that
the degrees of freedom would “locally equilibrate” with each
other.

Then we introduce a sudden local quench. We provide two
quench protocols for comparison: (I) lowering the potential of
the quench site to zero, that had much higher energy than other
sites and was initially empty before the quantum quench; and

(II) performing a measurement on the quench site and remove
the atom at this site. The details of the quench protocols are
to be specified in Sec. III. The dynamics following quench
protocol-(I) is completely unitary and is thus more convenient
for theoretical analysis, whereas the dynamics in protocol-(II)
is nonunitary because of the involved measurement, yet has the
advantage of being more experimentally feasible with quantum
microscope techniques [13–23]. We will provide a theoretical
analysis based on the unitary evolution following quench
protocol-(I) in this section, and provide simulated numerical
results for both protocols in Sec. III.

Despite the difference, both quench protocols lead to a hole
on the quench site in the density profile. Then the density profile
of this added hole is monitored. This density profile is expected
to be localized (delocalized) in the MBL (ergodic) phase.
The localization length can be correspondingly extracted from
the time-evolved density profile at long-time limit, say at τ2.
It is worth emphasizing here that our proposed scheme to
probe MBL criticality is rather easily adaptable to specific
experimental setups instead of being restricted to the particular
local quench protocol considered here.

To make it quantitative, here we analyze the quench dy-
namics following protocol-(I). We have a total number of
L + 1 sites labeled from 0 to L. The potential energy at site-0
is set to be much higher than other sites before quench, so
is initially empty. After the quench this site gets filled in
dynamics because its potential is then lowered down. Denoting
the pre and postquench Hamiltonian asH0 andH , the perturbed
density profile measures δnj = 〈ψ(τ1)|Oj |ψ(τ1)〉 where we
have

Oj = eiH0�τ n̂j e
−iH0�τ − eiH�τ n̂j e

−iH�τ ,

with �τ = τ2 − τ1. The difference between H and H0 is
strictly local near site-0. In the MBL phase, the phenomeno-
logical theory of local integrals of motion [50–53] implies that
the operator norm of Oj decays exponentially

||Oj || ∝ e−dj /ξ (2)

with ξ a localization length, and dj the distance of the j th
lattice site to site-0, which is given by dj = min(j,L + 1 − j )
in a periodic boundary system with size L + 1. In the thermal
phase, the support of Oj would spread over the whole system
through a linear light-cone dynamics. [24,71,72]. We can
thus extract the localization length from the perturbed density
profile δnj according to

ξ =
∑

j dj δnj
∑

j δnj

. (3)

In our numerical results shown in Fig. 1, we find stronger
disorder strength makes the density profile more localized
and thus ξ smaller. Increasing interaction strength makes the
density profile more extended, and ξ becomes larger.

The system is completely localized at the strong disorder
limit, whose eigenstates are simply product states. In the deep
localized phase, the localization length is vanishing in our
definition. Upon decreasing disorder, the localization length
becomes larger but still remains a finite number in the MBL
phase, i.e., with the scaling form L0 as we change the system
size. Further decreasing disorder, the scaling form of the
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FIG. 1. The perturbed density profile after a local quench fol-
lowing protocol-(I) (see main text). Here we choose the system size
L = 16 and average over 1000 disorder realizations in this figure. (a)
The density profile distribution with varying interaction strengths with
disorder strength fixed at W/t = 9. (b) The distribution for different
disorder strengths with interaction fixed at V/t = 1.

localization length switch to L/4 immediately after the ergodic
transition happens. In the one-dimensional system, the scaling
behavior of ξ would resemble the entanglement entropy in
both the localized and the ergodic phases. The difference is
that ξ can be measured in experiments whereas to measure the
entanglement entropy is difficult.

Assuming a unique diverging length scale δW−ν at the MBL
transition leads to a natural finite-size scaling ansatz for the
localization length

ξ/L ∼ g(L1/νδW ) (4)

with δW = W − Wc.
This scaling ansatz is consistent with the fact that ξ/L has

a jump across the MBL-to-ergodic transition in the thermody-
namic limit.

Given the scaling form of ξ/L, the transition point can be
extracted from the crossing of the curves for ξ/L versus the
disorder strength W with different system sizes. The critical
exponent ν as well as critical value Wc are determined by finite-
size scaling analysis [43,70].

III. SIMULATED RESULTS FOR POSTQUENCH
DYNAMICS

The proposed dynamical experiment is simulated by per-
forming exact diagonalization calculation. We use periodic

boundary condition to minimize finite-size effects in the nu-
merical calculation, and the system sizes are L = 8,10, . . . ,16.
For the experimental case, the finite-size effects are not
expected to be too significant because the number of sites in
optical lattice experiments could reach the order of 100, much
larger than that can be numerically simulated.

A. Quench protocol-(I)

In the quench protocol-(I), we have an empty site labeled
by an index 0, that has much higher potential energy than
other lattice sites in the system. The prequench lattice sites
are labeled as 1,2, . . . ,L. In the numerical simulation of
prequench dynamics, we restrict to the Hilbert space setting
the particle number at site 0 to be explicitly 0. At τ1 the
potential at site-0 is lowered down to the same level as other
lattice sites, which instantaneously creates a hole in the system
at site 0. The system is then evolved with a long time τ2,
where the created hole eventually stabilizes by interacting
with other particles. For L � 12, we perform the full matrix
diagonalization and average over 104 disorder realizations.
For L � 14, a Krylov space expansion is implemented for the
unitary e−iH t to save cost on memory, and we average over 103

disorder realizations. The dynamical evolution of local density
δnj = nj (τ1) − nj (τ2) is calculated, nj (τ ) = 〈ψ(τ )|n̂j |ψ(τ )〉,
with |ψ(τ )〉 the time-dependent quantum state.

Here we would like to describe a special treatment on the
perturbed density profile at the quenched site, i.e., δn0. If we are
in the thermal phase, the final state in our proposed dynamical
procedure is ergodic, and the density distribution is uniform
on every lattice site.

Since at time τ1 the occupation number at site-0 is different
from other sites, δn0 is compensated by adding 1/2. This
compensation makes δnj a flat profile in the thermal phase.
Meantime, the so-defined δnj then obeys a normalization
condition

∑
j δnj = 1/2.

From Fig. 1, averaged over different disorder realizations,
δni indeed shows exponential decay in the MBL phase with
strong disorder, and becomes flat in the ergodic phase at
weak disorder. Note that the notation . . . implies averaging
over disorder throughout. The interaction dependence is also
studied. Increasing interaction strength in the localized phase
only makes the density profile of the hole a bit more delo-
calized, and it still shows an exponential decay, showing that
the signature of MBL in quench dynamics is stable against
interaction effects.

Figure 2(a) shows the MBL criticality exhibited by the hole-
profile localization length in our proposed quench dynamics.
With an interaction strength V/t = 1, the extracted critical
disorder strength from the localization length is found to be
located at Wc/t = 4.90 ± 0.03. As we increase the interaction
strength, the localization becomes less robust and the re-
quired disorder strength to stabilize MBL gets larger [compare
Figs. 2(a) and 2(b)]. To find out the critical exponent ν, we
collapse the data to the scaling function g(L1/νδW ), which
gives an estimate of ν = 1.02 ± 0.09. This value breaks the
Harris-Chayes criterion ν � 2/d with d the spatial dimension
[68,69]. This violation would imply MBL criticality is beyond
the description of conventional field theory or renormalization
group study for disorder systems.
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FIG. 2. MBL criticality from our proposed quench dynamics with
protocol-(I) (see main text). (a), (b) MBL length as a function of
disorder strength for interaction strength V/t = 1 and V/t = 1.5,
respectively. The curve intersects at Wc/t = 4.90 ± 0.03 for V/t = 1
and at Wc/t = 5.57 ± 0.04 for V/t = 1.5. (c) Finite-size scaling with
scaling function g(L1/νδW ) where δW = W − Wc. Critical exponent
is estimated to be ν = 1.02 ± 0.09.

With the numerical results, we explicitly confirm that the
proposed quench dynamics can be used to study localization
length and MBL criticality.

B. Quench protocol—(II)

In the quench protocol-(II), we still let the initial state
evolve for long enough time τ1. The quench is performed
in a different way from protocol-(I). At τ1, we perform a
conditional measurement on a given site, here labeled as site-1.
Then we do a postselection, where the measurement-outcome
state is discarded if there is no particle on the measured lattice
site, and the state is kept otherwise. For the kept state, we

FIG. 3. The density profile after removing a particle on site-1 for
different disorder strengths following quench protocol-(II) (see main
text). We choose a system size L = 16, and an interaction strength
V/t = 1, and average over 1000 disorder realizations in this figure.
The density profile in this plot is normalized to 1.

remove the particle at this site to create a hole in the density
profile. This process can be carried out by quantum microscope
techniques in a straightforward way. For the initial state, we
choose both CDW and random states (the random-state case
is used as a comparison to determine whether there is any
artifact due to special choice of CDW states). CDW initial
states have been used in cold atom experiments to study
MBL [54].

We monitor the postquench density profile of the hole δnj

at a long time τ2. From Fig. 3, we confirm that the hole-profile
is localized (extended) in MBL (ergodic) phase. The local
hole density is defined as δnj = 1/2 − nj (τ2), and it obeys
a normalization condition

∑
j δnj = 1. Here, we remark that

removing one particle is necessary in this quench protocol
to study MBL length, a conditional measurement without
removing the particle could not create a well-defined hole in
the density profile.

The localization length extracted from this protocol is
shown in Fig. 4. We find its behavior is similar to the results
for quench protocol-(I) (see Fig. 2). In comparison to CDW
with random initial states, we find no qualitative difference.
For these two different choices of initial states, the crossing
point of MBL length versus disorder strength with different
system sizes is consistent with each other. We find systematic
data-collapse using the scaling form in Eq. (4) for both of them.
This implies the MBL criticality can be studied by using CDW
initial states which is relatively simpler to implement in optical
lattice experiments.

Comparing the results in Fig. 2 and Fig. 4, it is evident
that quench protocol-(II) works as well as quench protocol-(I),
although the dynamics is nonunitary for (II) but unitary for (I).
The similarity suggests that the details of the quench protocol
are not crucial for the study of localization length and MBL
criticality, provided that the quench creates a well-defined hole
in the density profile.

In our proposal, it is crucial to know the required dynamical
time scales before and after the quench, i.e., τ1 and τ2. For the
dynamics to reveal intrinsic MBL physics, it is necessary that
the system stabilizes for both before and after the quantum
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(a) (b)

(c) (d)

(e) (f)

FIG. 4. MBL criticality out of the quench protocol-(II) (see main
text). (a–d) show the localization length versus disorder strength with
the interaction fixed at V/t = 1. The transition point and criticality
is estimated to be Wc/t = 4.08 ± 0.04 and ν = 0.86 ± 0.06 for
CDW initial states and Wc/t = 3.82 ± 0.04 and ν = 0.73 ± 0.06 for
random initial state. In (e) and (f), interaction strength is V/t = 1.5.
The transition point and criticality is estimated to be Wc/t = 4.69 ±
0.05 and ν = 0.92 ± 0.08. In the calculation, for L � 12, the full
matrix diagonalization is performed and the results are averaged over
104 disorder realizations. For L � 14, a Krylov space expansion is
implemented for the unitary e−iH t , and we average over 103 disorder
realizations.

quench. In Fig. 5, we show details of the dynamical evolution.
Figures 5(a) and 5(c) show the prequench dynamics with
V/t = 1 and 1.5. We take one type of CDW state with
atoms occupying all odd sites and monitor the atom number
imbalance as I = No−Ne

No+Ne
, with No and Ne the total particle

numbers on odd and even lattice sites. It can be seen that
the system stabilizes after about 20 times of tunneling time.
Figures 5(b) and 5(d) show the postquench dynamics in the hole
density profile δnj . The system is found to stabilize after about
10 times tunneling time. Taking the two steps into account,
the required time scale to perform the quench experiment
is around 30 times tunneling time, which is about 30–100
milliseconds for a typical optical lattice with tunneling time
around 1 millisecond [4]. This is reasonably within the lifetime
of cold atom experiments.

(a) (b)

(c) (d)

FIG. 5. Pre and postquench dynamics following the quench
protocol-(II). Here we take CDW initial states, and choose L = 12.
(a) and (c) correspond to prequench dynamics in number imbalance I

(see main text) with V/t = 1 and 1.5, respectively. (b) and (d) show
the post-quench dynamics in the density profile δn2 for interaction
strengths V/t = 1 and 1.5.

C. Interaction dependence of the critical disorder strength
from local quench dynamics

Figure 6 shows a systematic study of interaction effects on
MBL transition for both quench protocols. At the interaction
strength V/t = 2, the fermion lattice model maps onto the
random field Heisenberg model, which has been extensively
studied in the literature. The transition point determined from
our proposed dynamical experiment agrees with previous
studies using other diagnostics [38–48]. Our approach has
an advantage in that all the quantities required to extract the
localization transition and criticality can be probed directly in
optical lattice experiments.

It is worth noting that for large system size (see Fig. 2),
the data crossing to determine the localization transition point
has a slight rightward drift as a result of finite-size effect. To
reach a conclusive answer for MBL criticality would rely on

FIG. 6. Critical disorder strength as a function of interaction
strength as extracted from our proposed local quench dynamics.
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(a) (b)

FIG. 7. (a) Localization length as a function of disorder strength
for the 3D Anderson model to benchmark our method. The curves
for different system sizes intersect at Wc/t = 15.88 ± 0.14. (b) Data
collapse to a scaling function gAL[L1/νδ] where δ = W − Wc, which
leads to ν = 1.6 ± 0.2.

the experiments which can go to large system sizes beyond the
computation capability of numerical simulations with classical
resources. The advantage of our proposed strategy to probe
MBL criticality is that the required ingredients are all presently
accessible with cold atoms in optical lattices.

IV. BENCHMARKING THE DYNAMICAL PROTOCOL
WITH ANDERSON LOCALIZATION

To benchmark the method of probing the MBL length in
our study, we carry out a simulation for the well-understood
3D Anderson localization whose Hamiltonian reads

Ĥ =
∑

〈jj ′〉
−t(ĉ†j ĉj ′ + H.c.) +

∑

j

hj n̂j . (5)

For this noninteracting model, we extract the localization
length from the long-time-evolved density profile of a single
particle initialized at one lattice site. This single-particle den-
sity profile indeed takes an exponential decay form. For L = 16
(20, 24 and 32), the density profile is averaged over 1000
(100) realizations and in the vicinity of expected transition

interval, we average over 1000 realizations for all sizes. For
benchmarking, the system sizes, i.e., number of lattice sites, of
the noninteracting Anderson model are chosen to be compara-
ble with the Hilbert space dimension of the interacting MBL
problem presented in Sec. III. By calculating the localization
length from the density profile, we find Wc/t = 15.88 ± 0.14
(see Fig. 7) and the critical exponent ν = 1.6 ± 0.2, which are
consistent with the well-known results for the Anderson model
[73]. This justifies the validity of our proposed dynamical
protocols to extract localization criticality.

V. CONCLUSION

In summary, we propose to use local quench dynamics to
probe the MBL-to-ergodic criticality. Its validity is confirmed
by benchmarking towards the well-known 3D Anderson local-
ization. In our proposed schemes, the localization length could
be extracted from the exponential decay of a perturbed density
profile after a local quantum quench. This proposal is expected
to guide future experiments in probing MBL criticality with
ultracold atoms in disordered optical lattices. Moreover, we
provide a finite-size scaling form of the localization length
across the transition, which is directly applicable in analyzing
the quench-dynamics data out of the proposed experiments. It
is worth future study to sort out the finite-size effects in the
quench dynamics of MBL, in particular about the violation
of the Harris-Chayes bound, for example, by developing
dynamical renormalization group techniques.
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